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a b s t r a c t 

To alleviate the boundary effect and constrain the update of the tracking model, current object tracking 

methods based on Discriminative Correlation Filter (DCF) usually introduce spatial and temporal regular- 

ization constraints in the filter training objective function. However, these regularization constraints with 

fixed coefficients greatly limit the adaptability of the tracker with respect to target appearance variation. 

This paper proposes a spatial-temporal regularization model based on the real-time target appearance 

variation for the filter training, improving the adaptability of the filter related to target appearance vari- 

ation. Moreover, the filter training objective function with the adaptive spatial-temporal regularization 

is proposed to enhance the robustness of the filter. Finally, an iterative optimization method based on 

the alternating direction method of multipliers (ADMM) is proposed to update the filter, and the conver- 

gence proof of the optimization method is also presented. Comparison experiments with some represen- 

tative trackers including ASRCF,ARCF, CSR_CF, DSAR_CF and SSR_CF etc. on OTB2015, UAV123 and LaSOT 

databases show that the proposed algorithm effectively improves the tracking accuracy. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

In today’s Internet of things and the “Internet +” era, services 

uch as scene monitoring, autonomous driving, drone navigation, 

nd human-computer interaction based on computer vision object 

racking technology are booming. Therefore, video object tracking 

ethods have attracted extensive attention and in-depth research 

rom academia and industry. The task of video object tracking is to 

redict the state of a single target in a video sequence according 

o the initial position and scale information of the target in the 

rst frame. However, some factors including deformation, occlu- 

ion, illumination variation and background cluttered etc., caused 

y complex environment make visual object tracking challenging. 

herefore, improving the tracker’s robustness to the interference 

nd the adaptability to target variation is of great significance. 

In recent years, many trackers have been proposed to improve 

he tracking performance. Existing approaches include: template 

atching [1] , statistical learning [2] , particle filter [3] , subspace 

earning [4] , discriminant correlation filter [5] , tracking method 

ased on deep convolutional neural networks (CNNs) [6] and 

iamese networks [7–9] , etc. Due to the outstanding tracking accu- 
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acy and higher tracking speed, the discriminative correlation filter 

DCF) method attracts the attention of many researchers [10–13] . 

he DCF method was firstly applied in the field of visual track- 

ng by Bolme et al. in the minimum output sum of squares error 

MOSSE) tracker [5] . The CSK (Circulant Structure of Tracking-by- 

etection with Kernels)tracker [14] introduced the kernel trick and 

he circulant matrix on the basis of MOSSE. By performing cyclic 

hift operation on the search area, the CSK tracker greatly enriched 

he training samples of the filter and improved the tracking accu- 

acy. However, CSK only used gray information as the sample fea- 

ure, leading to poor tracking robustness. 

To improve the robustness of tracking model, some works in- 

roduced high-dimensional features including histogram of ori- 

nted gradient(HOG) [15] and Color Names [16] as the represen- 

ation of the target appearance [17,18] . The CSR_DCF [19] adap- 

ively fused each channel in the HOG feature according the chan- 

el filter response to improve the tracking robustness. With the 

evelopment of deep network technology [20,21] , deep features 

nd networks have been widely used in DCF-based tracking meth- 

ds [22–26] , too. For example, the ATOM [24] and DiMP [25] con- 

tructed a powerful scale estimation model to deal with target ro- 

ation and viewpoint change using an offline-trained IOU-Net [27] . 

ome trackers [28–30] are also proposed by using offline-trained 

etwork to tackled great deformation induced by long-time span 

ideos. Since deep features are invariant to small changes of tar- 

https://doi.org/10.1016/j.sigpro.2022.108463
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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et appearance, they can greatly improve the tracking robustness. 

owever, the offline-trained network is difficult to be adjusted ac- 

ording to the real-time target variation, lacking the flexibility to 

dapt the dramatic target appearance variation. 

.1. Related work 

DCF methods efficiently update the filter in frequency domain 

ased on the periodic assumption of samples. But it will produce 

oundary effect on the edge of the sample images, which results 

n a large number of unreal training samples, damaging the track- 

ng performance. On the other hand, temporal smoothness of the 

uccessive filter model is helpful to improve the robustness and 

eneralization ability of the filter, thus enhancing overfitting resist- 

ng ability of the tracker. However, traditional temporal smooth- 

ess framework will persistently increase the computational com- 

lexity of the tracker. Meanwhile, the learning rate in the temporal 

moothness framework is usually fixed, which severely restricts the 

racker’s adaptability following the target appearance changing. 

To alleviate the boundary effect and enhance the adaptability of 

he tracking model, researchers have implemented the spatial and 

emporal regularization into the filter training objective function. 

he spatial regularization 

Traditional DCF trackers used the cosine window to alleviate 

he boundary effect, limiting the search area of the tracking model 

5,17,31–33] . The CSR_DCF [19] introduced a spatial reliability map 

o identify pixels that should be ignored in filter learning. However, 

his spatial reliability map set to be fixed in the whole tracking 

rocess, thus cannot adapt the target appearance variation. Refer- 

ncing human’s visual attention mechanism, Danelljan et al. intro- 

uced a quadratic polynomial spatial regularization matrix in the 

lter training objective function of the spatially regularized dis- 

riminative correlation filter (SRDCF) [34] . This spatial regulariza- 

ion matrix punishs the filter model coefficients corresponding to 

he boundary region, effectively enhancing the discrimination of 

he tracker. Galoogahi et al. proposed the background-aware cor- 

elation filter (BACF), which not only employed a binary matrix 

nto eliminate unreal negative samples, but also used the real posi- 

ive and negative samples for filter training [35] . The selective spa- 

ial regularization(SSR-CF) [36] tracker constructed three different 

patial weight maps and used a selector to determine which spa- 

ial weight map to use. However, above-mentioned trackers all use 

patial constraint matrixes with fixed coefficients or several spa- 

ial weight maps, which are less adaptable to the target whose ap- 

earance is constantly changing. To eliminate this defect, the adap- 

ive spatially-regularized correlation filter (ASRCF) [37] introduced 

he regularization constraint of the coefficients of the spatial con- 

traint matrix. Unfortunately, the penalty coefficient of this regular- 

zation is fixed, and the adaptability of the spatial constraint ma- 

rix with respect to the target deformation is still lacking, leading 

arget missing in the scene of target severe deformation. The DSAR- 

F [38] tracker dynamically varied the spatial regularization weight 

ap by considering both the saliency map and the response map. 

owever, the saliency map merely captures object shape and size 

ariation, while ignores other variation of the target appearance in- 

luding the color, texture, and illumination variation that are es- 

ential for target tracking. 

he temporal regularization 

Most DCF trackers implement temporal smoothness by updat- 

ng the filter and target appearance model in a moving average 

cheme [17,22,34,37,39] . However, this scheme will persistently in- 

rease the training sample space and the computational complex- 

ty of the tracker. For this reason, the deep spatial-temporal reg- 

larized correlation filter (DeepSTRCF) instead implemented the 
2 
emporal smoothness by introducing the temporal regularization 

nto the objective function [40] . The temporal regularization re- 

tricts the filter training into a single frame, effectively avoiding 

he sample space expansion. Meanwhile, the aberrance repressed 

orrelation filter (ARCF) introduced the temporal regular term of 

he filter response into the objective function to enhance track- 

ng robustness [41] . However, the regularization coefficients of the 

rackers above are fixed in the whole tracking process. Although it 

llows the tracker to make good use of the historical information 

f the target appearance and ensure its robustness, it limits the 

racker’s adaptability with respect to target appearance changing. 

To sum up, spatial and temporal regularization constraints with 

xed coefficients are often used in the objective function of cur- 

ent tracking methods. The regularization constraints can reduce 

he influence of boundary effect and enhance the robustness of 

he tracking model. However, they greatly limit the adaptability of 

racker with respect to target appearance changing. In situations 

here the appearance of the target changes greatly, the tracker is 

rone to lose the target. 

.2. Contributions 

To maintain the tracking robustness and improve the tracker’s 

daptability as far as possible, this paper embeds an adaptive 

patial-temporal regularization constraint based on target appear- 

nce variation into the filter training objective function. The key 

nnovations of the proposed method are listed as follows, 

• This paper constructs an adaptive spatial-temporal regulariza- 

tion model based on the target appearance variation. Differ- 

ent from the regularization with fixed coefficients in traditional 

trackers, the proposed method can adaptively adjust the reg- 

ularization coefficients according to the real-time variation of 

target appearance, thus can significantly improve the adaptabil- 

ity and the robustness of the tracker. 

• This paper proposes a novel filter training objective function 

under the proposed adaptive spatial-temporal regularization. 

And an iterative objective function solving algorithm based 

on the alternating direction method (ADMM) is also proposed 

to improve the tracking accuracy while guaranteeing tracking 

speed. 

• This paper presents extensive experiments on OTB2015, UAV123 

and LaSOT datasets to verify the superiority of our method 

over state-of-the-art competitors that employ the spatial regu- 

larization or temporal regularization technology, such as ASRCF, 

ARCF, STRCF and so on. 

.3. Paper organization 

The rest of this paper is organized as follows: Section 2 briefly 

ives the filter training constraint function in traditional DCF meth- 

ds and its shortcomings; Section 3 proposes the adaptive spatial- 

emporal regularization model based on real-time target appear- 

nce variation, and proposes the filter training objective function 

ith this regularization model. Furthermore, the iterative solution 

rocess of the objective function is derived in detail; Section 4 pro- 

ides an overview of the proposed tracking algorithm; The analysis 

nd experimental comparison results with some competing track- 

rs are presented in Sections 5 and 6 gives some conclusions of 

his paper. 

. Traditional spatial-temporal regularization of filter training 

Among the multi-channel feature DCF trackers, the earliest 

ethod introducing the spatial and temporal regularization con- 

traints into filter training function is DeepSTRCF [40] . The filter 
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raining objective function in this tracker is defined as, 

 t = arg min 
f t 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 

x d t ∗ f d t − y t 

∥∥∥∥∥
2 

l 2 

+ 

1 

2 

D ∑ 

d=1 

∥∥w · f d t 

∥∥2 

l 2 
+ 

μ

2 
‖ f t − f t−1 ‖ 2 l 2 (1) 

The “∗” represents the circular convolution operation, and the 

·” denotes the Hadamard product. The l 2 -norm of the matrix x 

s defined as ‖ x ‖ 2 l 2 
= x T x . The training sample x t = 

(
x 1 t , . . . , x 

D 
t 

)
∈ 

 

W ×H×D is obtained by extracting sample features from the sample 

mage patch centered at the estimated target position p t in frame 

. The size of the sample feature x t is W × H , and there are D num-

er of feature channels in x t . The y t ∈ R 

W ×H is the label of the 

raining sample x t , and it is a 2-D Gaussian function centered at 

he position of the target. The matrix w ∈ R 

W ×H is the spatial reg- 

larization constraint, and the μ is a constant temporal regulariza- 

ion constraint, and the f t−1 is the filter obtained in frame t − 1 . 

he multi-channel filter f t = 

(
f 1 t , . . . , f 

D 
t 

)
∈ R 

W ×H×D is updated in 

rame t by solving the above objective function. In frame t , the 

esponse score of the tracking sample z t = 

(
z 1 t , . . . , z 

D 
t 

)
on the filter 

s expressed as, 

 ( z t ) = 

D ∑ 

d=1 

z d t ∗ f d t−1 (2) 

here the tracking sample z t is extracted in frame t centered 

t the previous target position p t−1 . The target in frame t is lo- 

ated at the position with the maximum response. It can be seen 

hat the objective function in Eq. (1) consists of three parts, 

amely the least squares loss 

∥∥∥∥ D ∑ 

d=1 

x d t ∗ f d t − y t 

∥∥∥∥
2 

l 2 

, the spatial reg- 

larization 

1 
2 

D ∑ 

d=1 

∥∥w · f d t 

∥∥2 

l 2 
and the temporal regularization con- 

traint μ
2 ‖ f t − f t−1 ‖ 2 l 2 weighted by a constant μ. 

Given the training sample size W × H, the spatial regulariza- 

ion w ∈ R 

W ×H in 

1 
2 

D ∑ 

d=1 

∥∥w · f d t 

∥∥2 

l 2 
gets the minimum value at the 

enter of the target and the larger value at the boundary of the 

ample patch. Therefore, it can suppress the filter coefficients cor- 

esponding to image boundary and make the filter pay more at- 

ention to the central area of the target, thus effectively alleviat- 

ng the boundary effect. However, the spatial regularization w is 

xed in the whole tracking process. Therefore, it cannot adapt to 

he persistent target appearance variation, and the filter f t cannot 

ully capture the diversity of the target appearance change during 

he updating process. 

On the other hand, in the temporal regularization 

μ
2 ‖ f t − f t−1 ‖ 2 l 2 

f the filter, the updated filter f t in frame t is constrained to have 

ome similarity with the filter model f t−1 in the previous frame 

 − 1 . The temporal regularization allows the tracker to make fully 

se of the historical information of the target appearance, so as to 

mprove the tracking robustness and avoid filter degradation. How- 

ver, the temporal regularization of the filter in Eq. (1) does not 

onsider the real-time change rate of the target appearance, and its 

egularization coefficient remains fixed during the whole tracking 

rocess. This conservative time regularization constraint limits the 

daptive ability of the filter with respect to the target appearance 

hanging, and the trained filter f t usually has less sensitivity with 

espect to the current state of the target when the target appear- 

nce changing violently, which leads to tracking failure. 

. Adaptive spatial-temporal regularization based on target 

ppearance variation 

In order to solve the problems in the traditional spatial and 

emporal regularization described in Section 2 and improve the 
3 
racker’s adaptability, this section proposes an adaptive spatial- 

emporal regularization model based on the real-time target ap- 

earance variation, and constructs the filter training objective func- 

ion related to this constraint model. Based on the ADMM, the it- 

rative solution process of the filter model is derived. Fig. 1 shows 

he diagram of the filter training method with the proposed adap- 

ive spatial-temporal regularization model. More details about the 

lter training method in Fig. 1 are discussed in the rest of this sec- 

ion. 

.1. Adaptive spatial-temporal regularization 

Introducing the proposed adaptive spatial-temporal regulariza- 

ion constraint into the traditional filter training objective function, 

e adjust the Eq. (1) as, 

 t = arg min 

f t 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 

x d t ∗ f d t − y t 

∥∥∥∥∥
2 

l 2 

+ 

λ1 

2 

D ∑ 

d=1 

∥∥ f d t 

∥∥2 

l 2 
+ 

λ2 

2 

R ST ( f t ) (3) 

here the R ST ( f t ) represents the adaptive spatial-temporal regular- 

zation model in frame t based on the real-time target appearance 

ariation. The R ST ( f t ) is expressed as, 

 ST ( f ) = 

D ∑ 

d=1 

∥∥( 1 + ψ ( t ) ) · w ·
(

f d t − f d t−1 

)∥∥2 

l 2 
(4) 

here the spatial regularization constraint w defined on the train- 

ng sample x ∈ R 

W ×H×D is expressed as, 

 ( m, n ) = μ + η
[
( m/W ) 

2 + ( n/H ) 
2 
]

(5) 

here m ∈ 

[
−W 

2 , 
W 

2 − 1 
]
, and n ∈ 

[
− H 

2 , 
H 
2 − 1 

]
. 

In Eq. (4) , the 1 + ψ ( t ) ∈ R 

W ×H is the temporal regulariza- 

ion constraint based on the real-time target appearance variation. 

nd the proposed adaptive spatial-temporal regularization is con- 

tructed as the element-wise multiplication of the above spatial 

nd temporal regularization matrixes. 

For the training sample x t obtained in frame t , its jth cross- 

hannel element is denoted as V j ( x t ) = 

(
x 1 t ( j ) , . . . , x 

D 
t ( j ) 

)
∈ R 

D ×1 , 

hus there N = W × H number of cross-channel elements in x t that 

orrespond to different regions of the sample image. The jth el- 

ment of the proposed adaptive temporal regularization 1 + ψ ( t ) 
ased on the real-time target appearance variation is defined as, 

 + ψ ( t ) { j } = 1 + a · e −b ‖ 

V j ( x t ) −V j ( x ∗t−1 ) ‖ 

2 

l 2 , j = 1 , . . . , N (6) 

here the a and b are constants, and the reference training sample 

 

∗
t−1 is obtained by the weighted average of samples ( x 1 , . . . , x t−1 ) 
n frame 1 to t . Therefore, the value of the 1 + ψ ( t ) { j } ∈ R is

alculated by evaluating the change rate 
∥∥V j ( x t ) − V j 

(
x ∗

t−1 

)∥∥2 

l 2 
of 

he jth cross-channel element V j ( x t ) of x t , and it is the tem- 

oral regularization constraint of the jth cross-channel element 

 j ( f t ) = 

(
f 1 t ( j ) , . . . , f 

D 
t ( j ) 

)
of the filter. The values of 1 + ψ ( t ) { j } 

nd 

∥∥V j ( x t ) − V j 
(
x ∗t−1 

)∥∥2 

l 2 
are negatively correlated. That is, when 

he value of 
∥∥V j ( x t ) − V j 

(
x ∗t−1 

)∥∥2 

l 2 
is small, indicating that the tar- 

et appearance in the jth region is relatively stable, the constraint 

alue 1 + ψ ( t ) { j } will be relatively large to let the filter update sta- 

ly with the historical information of the target appearance. On 

he contrary, when the 
∥∥V j ( x t ) − V j 

(
x ∗

t−1 

)∥∥2 

l 2 
is considerably large, 

hich reflects that the target appearance in the jth region changes 

iolently, the value of 1 + ψ ( t ) { j } will adaptively decrease to allow 

 j ( f t ) to update more significantly, ensuring the adaptability with 

espect to target appearance changing. 

In conclusion, firstly, the spatial regularization w assigns differ- 

nt weight to each V j ( f t ) according to the position of V j ( x t ) rela- 

ive to the target center, endowing the learned filter with more at- 

ention to the central region of the target. Secondly, the temporal 
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Fig. 1. Filter training with the adaptive spatial-temporal regularization model. 
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ĝ

egularization ( 1 + ψ ( t ) ) further adjusts the weight to the V j ( f t ) 

ased on the real-time change 
∥∥V j ( x t ) − V j 

(
x ∗t−1 

)∥∥2 

l 2 
of V j ( x t ) , en- 

ancing the tracker’s adaptability. 

.2. Filter training objective function with the proposed adaptive 

patial-temporal regularization 

Substituting Eq. (4) into Eq. (3) , the filter training objective 

unction with the proposed adaptive spatial-temporal regulariza- 

ion is described as, 

 t = arg min 

f t 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 

x d t ∗ f d t − y t 

∥∥∥∥∥
2 

l 2 

+ 

λ1 

2 

D ∑ 

d=1 

∥∥ f d t 

∥∥2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥( 1 + ψ ( t ) ) · w ·
(

f d t − f d t−1 

)∥∥2 

l 2 
(7) 

It can be found in Eq. (7) that the proposed adaptive spatial- 

emporal regularization ( 1 + ψ ( t ) ) · w adaptively adjusts the con- 

traint of the training and updating of the filter f t = 

(
f 1 t , . . . , f 

D 
t 

)
ccording to the target appearance variation. Thus it can effectively 

mprove the adaptability of filter with respect to the current target 

ppearance, while reducing the boundary effect and ensuring the 

racker’s stability. 

Using fast fourier transform (FFT), the objective function above 

an be effectively solved in the Fourier domain. By applying Par- 

eval’s theorem to Eq. (7) , the filter training objective function in 

ourier domain is equivalent to, 

 

 t = arg min ̂ f t 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 ̂

 x d t · ̂ f d t − ̂ y t 

∥∥∥∥∥
2 

l 2 

+ 

λ1 

2 

D ∑ 

d=1 

∥∥̂ f d t 

∥∥2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w ∗
(̂ f d t − ̂ f d t−1 

)∥∥2 

l 2 
(8) 

.3. Iterative optimization of the filter based on ADMM 

To solve the Eq. (8) , we employ the ADMM. Let the ̂ g = ̂

 f t 
e the introduced auxiliary variable, the required augmented La- 

rangian form of Eq. (8) is written as, 

 

(̂
 f t , ̂  g , ̂  h 

)
= 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 ̂

 x d t · ̂ f d t − ̂ y t 

∥∥∥∥∥
2 

l 2 

+ 

λ1 

2 

D ∑ 

d=1 

∥∥̂ g d 
∥∥2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w ∗
(̂ f d t − ̂ f d t−1 

)∥∥2 

l 2 

+ 

η

2 

D ∑ 

d=1 

∥∥̂ f d t − ̂ g d + ̂

 h 

d 
∥∥2 

l 2 
(9) 

here the ̂ h = 

(̂
 h 1 , . . . , ̂  h D 

)
is the Lagrange multiplier, and the is 

a penalty factor. The ADMM algorithm is adopted by alternately 
4 
olving the three subproblems in Eq. (10) , and each subproblem in 

an be solved as follows, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1 : ̂  f ( 
i +1 ) 

t = arg min ̂ f t 

1 
2 

∥∥∥∥ D ∑ 

d=1 ̂

 x d t · ̂ f d t − ̂ y t 

∥∥∥∥
2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w ∗
(̂ f d t − ̂ f d t−1 

)∥∥2 

l 2 
+ 

η
2 

D ∑ 

d=1 

∥∥̂ f d t − ̂ g d + ̂

 h d 
∥∥2 

l 2 

Q2 : ̂  g ( i +1 ) = arg min ̂ g 

λ1 

2 

D ∑ 

d=1 

∥∥̂ g d 
∥∥2 

L 2 
+ 

η
2 

D ∑ 

d=1 

∥∥̂ f d t − ̂ g d + ̂

 h d 
∥∥2 

l 2 

Q3 : ̂  h 

( i +1 ) = ̂

 h 

( i ) + ̂

 f ( i +1 ) −̂ g ( i +1 ) 

(10) 

• Q1 . Solution to the filter ̂  f t 

When updating the filter ̂  f t in frame t , the 
(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w of 

1 in Eq. (10) is known and therefore can be denoted as β( t ) = 

1 + 

̂ ψ ( t ) 
)

∗ ̂ w , which means the β( t ) ∈ R 

W ×H . However, it is dif- 

cult to optimize the subproblem Q1 due to its high computation 

omplexity caused be the high-dimensional features. In order to 

mprove computational efficiency, it is necessary to consider solv- 

ng the filter on all cross-channel elements of each feature. 

Denoting the jth cross-channel element of the filter 
 

 t = 

(̂ f 1 t , . . . , ̂
 f D t 

)
∈ R 

W ×H×D as V j 
(̂

 f t 
)

= 

(̂ f 1 t ( j ) , . . . , ̂
 f D t ( j ) 

)
∈ R 

D ×1 , 

he optimization problem of the jth cross-channel element of the 

lter is derived as, 

 j 

(̂
 f t 
)∗ = arg min 

V j ( ̂ f t ) 

1 

2 

∥∥V j ( ̂  x t ) 
T 
V j 

(̂
 f t 
)

− ̂ y t ( j ) 
∥∥2 

l 2 

+ 

λ2 

2 

∥∥β( t ) { j } (V j 

(̂
 f t 
)

− V j 

(̂
 f t−1 

))∥∥2 

l 2 

+ 

η

2 

∥∥V j 

(̂
 f t 
)

− V j ( ̂  g ) + V j 

(̂ h 

)∥∥2 

l 2 
(11) 

here the β( t ) ( j ) ∈ R is the jth element of β( t ) . Taking the 

erivative of Eq. (11) with respect to the V j 
(̂

 f 
)

be zero, we can 

et the closed-form solution for jth cross-channel element of the 

lter with the Sherman–Morrsion formula as, 

 j 

(̂
 f t 
)∗ = 

1 

λ2 β( t ) { j } + η

(
I − V j ( ̂  x t ) V j ( ̂  x t ) 

T 

λ2 β( t ) { j } + η + V j ( ̂  x t ) 
T 
V j ( ̂  x t ) 

)
p 

(12) 

here the p is expressed as, 

 = V j ( ̂  x t ) ̂  y t ( j ) + λ2 β( t ) { j } [V j 

(̂
 f t−1 

)
− V j 

(̂ h 

)]
+ ηV j ( ̂  g ) (13) 

Note that Eq. (12) only contains vector multiply-add operation 

nd thus the V j 
(̂

 f 
)

can be computed efficiently. And the filter f t 
n the spatial domain then can be further obtained by taking the 

nverse DFT of the ̂  f t in Eq. (12) . 

• Q2 . Solution to the auxiliary variable ̂  g 

The vectorization of the Q2 in Eq. (10) is expressed as, 

 

 

∗ = arg min ̂ g 

λ1 

2 

‖ ̂

 g ‖ 

2 
l 2 + 

η

2 

∥∥̂  f t −̂ g + ̂

 h 

∥∥2 

l 2 
(14) 
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Fig. 2. Filter training with the adaptive spatial-temporal regularization model. 
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If other variables in Eq. (14) are fixed, the ̂ g can be obtained 

y taking the derivative of Eq. (14) with respect to the ̂  g be zero. 

he solution of ̂  g can be expressed as, 

 

 

∗ = 

η

λ1 + η

(̂
 f t + ̂

 h 

)
(15) 

• Q3 . Solution to the Lagrange multiplier ̂  h 

The update formula of the Lagrange multiplier ̂ h in Q3 of 

q. (10) is, 

 

 

( i +1 ) = ̂

 h 

( i ) + ̂

 f ( 
i +1 ) 

t −̂ g 

( i +1 ) (16) 

here the ̂  f ( 
i +1 ) 

t and ̂

 g ( i +1 ) are obtained by Eqs. (12) and (15) . 

It should be noted that the convergence of the proposed filter 

raining method is proved in the Appendix. 

. The implementation framework of the proposed method 

The filter training and updating framework with the proposed 

daptive spatial-temporal regularization based on the target ap- 

earance variation model is shown in Fig. 2 . 

As can be seen, there are four modules contained in Fig. 2 , 

hich going forward one by one from top to bottom are the Fea- 

ure mapping, the Generating reference samples, the Regulariza- 

ion constructing and the Filter training. Firstly, the sample fea- 

ures ( x 1 , . . . , x t ) of the training sample patches in frame 1 to 

are extracted in the module of Feature mapping. Secondly, the 

eference sample x ∗t−1 = ( 1 − α) x ∗t−2 + αx t−1 in frame t is con- 

tructed in the module called Generating reference samples by tak- 

ng weighted average of the training samples ( x 1 , . . . , x t−1 ) . Then 

e use the training sample x t and the reference sample x ∗t−1 to 

daptively adjust the filter training spatial-temporal regularization 

onstraint ( 1 + ψ ( t ) ) · w . F inally the filter updating in frame t will 

e implemented in the Filter training module with the adjusted 

patial-temporal regularization constraint ( 1 + ψ ( t ) ) · w . 
5 
.1. Feature mapping 

The rectangles with the abbreviation FM in this module of 

ig. 2 represent the process of sample feature extracting. When up- 

ating the filter in frame t , the Feature mapping module will firstly 

rop out the sample patch centered at the target position in frame 

, and then extract its multi-channel sample feature x t to construct 

he target appearance model in frame t . The obtained x t is used as 

he training sample of the filter. 

.2. Generating reference samplesto the Lagrange multiplier 

In order to evaluate the variation of the target appearance more 

ccurately, it is necessary to establish a reference sample recording 

he historical target appearance information. The reference sample 

 

∗
t−1 in this paper is generated by taking weighted average of the 

amples ( x 1 , . . . , x t−1 ) extracted in frame 1 to t , which means, 

 

∗
t−1 = ( 1 − α) x 

∗
t−2 + αx t−1 (17) 

here the α is the learning rate. It should be noted that the refer- 

nce sample in the second frame is defined as x ∗1 = x 1 . 

.3. Regularization constructing 

In the frame t , with the obtained reference sample x ∗t−1 and 

he current target appearance model x t , the proposed method can 

valuate the real-time variation of every parts of target appearance 

odel 
∥∥V j ( x t ) − V j 

(
x ∗t−1 

)∥∥2 

l 2 
, j = 1 , . . . , N, and then adaptively ad- 

ust the filter training spatial-temporal regularization ( 1 + ψ ( t ) ) ·
 by Eq. (5) . 

.4. Filter training 

In the filter training module, the filter can be efficiently learned 

y solving the objective function described in Eq. (8) . The iterative 
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Algorithm 1. The filter training and updating process in frame t . 
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Table 1 

Parameters of experimental. 

Parameter name Value 

Parameter a in Eq. (6) 1 / 12 

Parameter b in Eq. (6) 0.5 

The learning rate α in Eq. (17) 0.15 

The regularization parameter λ1 in Eq. (7) 10 

The regularization parameter λ2 in Eq. (7) Deep: 12; hand-crafted: 16 

Spatial regularization parameters μ in Eq. (5) 0.1 

Spatial regularization parameters η in Eq. (5) 3 
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olving method of the objective function with FFT transform based 

n the ADMM has been described in Section 3.3 . 

More details about the filter training process on a video that 

ontains Num numbers of image frames are shown in the following 

lgorithm 1 . 

. Experiments 

To verify the tracking performance related to the proposed 

ethod (OURS), comparison experiments are implemented with 

ome state-of-the-art trackers including DeepSTRCF [40] , ASRCF 

37] , ARCF [41] , BACF [35] , ECO [22] , SRDCF [34] , CSR_DCF [19] ,

SST [39] SSR_CF [36] and DSAR_CF [38] . The three datasets in- 

luding OTB2015 [10] , UAV123 [11] and the testset of the LaSOT 

13] are used to evaluate the tracking performance of the track- 

rs. The OTB2015 dataset is the most popular tracking benchmark 

ith 100 video sequences. These videos are fully annotated with 11 

ifferent attributes, which can effectively evaluate the comprehen- 

ive tracking accuracy of the tracker. The UAV123 dataset contains 

 total of 123 video sequences taken from an aerial viewpoint. 

hese videos have a long-time span, and the targets as well as the 

iewpoints in these videos also go through more changes. And the 

aSOT dataset consists of 1400 sequences with more than 3.5 M 

rames in total, which comprise various challenges deriving from 

he wild where target objects may disappear and re-appear again 

n the view. Thus, these four datasets are appropriate to evaluate 

he adaptability and robustness of the tracker in a variety of differ- 

nt tracking conditions. It should be noted that only single-object 

racking task is considered in the comparison of this paper. Be- 

ides, the performances of the trackers above are compared under 

he same environment conditions using MATLAB2016b equipped 

ith Windows 10-64bit on Intel(R) Core (TM) i5-9300H CPU and 

 GB RAM. 
6 
.1. Experimental parameters 

The proposed method uses the hand-crafted features includ- 

ng Color Names and HOG, and deep CNN features extracted using 

he 24th and 74th layers of the ResNet-50 as the sample features 

o construct the target appearance model and train the filter. The 

xperimental parameters related to the proposed method are de- 

cribed in Table 1 . 

.2. Evaluation indicators 

The one-pass evaluation (OPE) criterion is used to measure the 

racking performance. The success plot, precision plot and four 

umerical values, i.e. mean distance precision (Mean DP), mean 

verlap precision (Mean OP), tracking speed (FPS) and area-under- 

urve (AUC) are used as the expressions of the experiment results. 

he tracking distance precision (DP) in a video is defined as the 

atio of frames where the Euclidean distance between the tracking 

utput and ground truth is smaller than a threshold dp, here, dp = 

0 ( pixel ) . The tracking overlap precision (OP) in a video is defined 

s the ratio of frames which the intersection-over-union (IOU) is 

reater than a certain threshold op, here, op = 0 . 5 . And given an

stimated bounding box ROI e and the ground-truth bounding box 

OI g of the target, the IOU is defined as, 

OU = 

area ( RO I e ∩ RO I g ) 

area ( RO I e ∪ RO I g ) 
(18) 

.3. Comparisons and analysis 

.3.1. The performance of the proposed method 

In this section, we firstly discuss the proposed tracker’s adapt- 

bility to target appearance variation and the robustness to the in- 

erference. 

Adaptability To demonstrate the ability of the proposed method 

o adapt to the target appearance changing, Fig. 3 shows the tem- 

oral filter variation in the tracking process on the video named 

ar16_2_1. The value of the filter variation curve in frame t is cal- 

ulated as �f ( t ) = ξ‖ f t − f t−1 ‖ 2 , where the ξ is the normalization 

actor. 

It can be seen from the Fig. 3 that compared with other track- 

rs, the red curve of the filter variation corresponding to the 

roposed tracker has a floating range of 0 . 5 × 1 0 −3 ∼ 1 . 3 × 1 0 −3 , 

hich is relatively flat. This shows that the filter model in our 

ethod does not change drastically during tracking process, and 

as better robustness. Furthermore, as shown by Subsequence1 in 

ig. 3 , in the frame 1 to 600 frames of the video, the appear-

nce of the target is relatively stable, with only small deforma- 

ion and scale changes. In this case, the filter model change of our 

ethod has a relatively small floating range between 0 . 5 × 1 0 −3 ∼
 . 0 × 1 0 −3 . This indicates that our tracker can update the filter 

teadily and smoothly by historical information of the target ap- 

earance fully using, leading to tracking robustness enhancing. On 

he contrary, when the target appearance changes visibly in the 

rame 700 to 800, which is shown in Subsequence2 of Fig. 3 , 
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Fig. 3. Comparison of the temporal filter variation on car16_2_1. 

Fig. 4. Comparison of the filter responses on video person16_1. 
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he filter variation curve of our method firstly reaches a higher 

eak about 1 . 3 × 1 0 −3 at about the 750th frame, earlier than other 

rackers. The results in Fig. 3 can demonstrate that in situations 

here the target appearance changes greatly, our method can up- 

ate the filter more significantly, ensuring its ability to adapt to 

he current target appearance. Therefore, our tracker enhances the 

daptability to the target appearance changes. 

Robustness In order to further prove the robustness of the pro- 

osed tracker to the interference, Fig. 4 shows the comparison of 

he filter response heat-maps on frame 171 (first row) and frame 

39 (second row) of the video person16_1. The comparison coun- 

erparts are 7 trackers equipped with temporal or spatial regu- 

arization, including ASRCF, ARCF, DeepSTRCF, ECO, BACF, CSR_DCF 

nd SRDCF. 

As can be seen in Fig. 4 , in frame 171 where the target is par-

ially occluded, the maximum filter response of OURS is accurately 

ocated at the center of the target, and the most energy of our filter 

esponse concentrates in the target region, without being greatly 

ffected by the occlusion. While, the filter response of other meth- 

ds is more scattered. For example, the ASRCF, ARCF, DeepSTRCF, 

nd BACF algorithms all produce larger filter responses on obstruc- 

ions. Moreover, the maximum filter responses of the other track- 

rs including ECO, CSR_DCF and SRDCF are severely attenuated be- 

ause of the noise caused by the obstructions. In frame 239, it 

an be seen that the proposed tracker can accurately track the tar- 

et which is out of the occlusion, and the filter response of OURS 

s still concentrated in the target area. While, other trackers are 

reatly affected by the occlusion, their maximum filter response 

re stuck on the obstructions and cannot continue to effectively 

rack the target. 

Therefore, the results in Fig. 4 above show that the proposed 

ethod has strong robustness to interference, such as occlusion, in 

racking process. In fact, the proposed tracker is also robust against 
t

7 
any other interference factors including target in-plane/out-of- 

lane rotation, motion blur, illumination variation and background 

lutter. These can be verified in the following experimental results. 

.3.2. Baseline comparison 

In this section, a comprehensive comparative analysis of the 

racking performance of the proposed method with 10 comparison 

rackers is given. Fig. 5 (a)–(c) show the comparison of Mean OP, 

ean DP and FPS of the trackers on OTB2015, UAV123 and LaSOT 

atasets. And the best results are highlighted in red fonts. 

It can be seen that in the comparison on the OTB2015 dataset 

hown in Fig. 5 (a), the OURS achieves the highest Mean OP of 

9.6%, the highest Mean DP of 93.3%. Compared with the second- 

est ASRCF, the proposed method achieves a gain of 3.5% in Mean 

P and 6.1% in Mean DP respectively, which is shown in Fig. 5 (a).

n the comparison on the UAV123 dataset shown in Fig. 5 (b), the 

URS achieves the highest Mean OP of 67.8% and the highest Mean 

P of 76.8%, which are better than that of the second-best ASRCF 

racker by 6.3% and 6.3% respectively. 

Furthermore, In the comparison on the LaSOT dataset shown 

n Fig. 5 (c), the OURS also achieves the highest Mean OP of 41% 

nd the highest Mean DP of 46%, which are better than that of the 

econd-best DeepSTRCF tracker by 3.5% and 6.9% respectively. 

In the comparison of the FPS on three datasets showed in 

ig. 5 (a)–(c), OURS achieves acceptable speeds as 13.71, 14.03 and 

1 fps on OTB2015, UAV123 and LASOT datasets respectively. Ben- 

fited from the proposed adaptive spatial-temporal regularization, 

URS can update the filter more stably by fully using of the his- 

orical target information, to prevent the tracker overfitting. More- 

ver, OURS can also adaptively adjust the degree of the filter up- 

ating according to the current change in target appearance to ac- 

urately track the constantly changing target. Therefore, although 

he tracking speeds of OURS are slightly inferior than that of the 



L. Zhou, Y. Jin, H. Wang et al. Signal Processing 195 (2022) 108463 

Fig. 5. Comparison of Mean OP, Mean DP and FPS on OTB2015(a), UAV123(b) and LaSOT(c). 
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astest trackers such as DSST and BACF, the tracking performance 

f the proposed method is significantly improved. 

Fig. 6 (a)–(c) show the success plots and the precision plots on 

TB2015, UAV123 and LaSOT datasets, respectively. The AUC scores 

f each tracker are displayed behind its tracker name in the Suc- 

ess plots, and the mean distance precision scores of are displayed 

ehind the tracker name in the Precision plots. It can be seen in 

ig. 6 (a)–(c), the red curve corresponding to OURS is always at the 

op of the success plots and the precision plots, indicating that the 

roposed method outperforms other trackers. 

In the comparison results on OTB2015 dataset which is shown 

n Fig. 6 (a), OURS achieves a maximum AUC of 69.6% and a maxi- 

um mean distance precision of 93.3%, while the second best AS- 

CF achieves the tracking performance very close to the proposed 

racker, reaching an AUC of 68.9% and a mean distance precision of 

1.9%, respectively. 

Fig. 6 (b) shows the success plots and the precision plots on the 

AV123 dataset. It is obvious that the red curve corresponding to 
8 
URS is still at the top. The proposed tracker achieves the high- 

st AUC score of 53.2% and a maximum mean distance precision 

f 76.8%. Compared with the ASRCF and DeepSTRCF, the tracking 

erformance of our method is significantly improved. The second- 

est ASRCF tracker achieves an AUC score of 50.8% and a mean 

istance precision of 73.8%. And the DeepSTRCF tracker achieves 

n AUC score of 50.8% and a mean distance precision of 70.5%. 

The comparison results on LaSOT dataset are shown in Fig. 6 (c). 

t can be seen that the red curve corresponding to OURS is still at 

he top. The OURS achieves the highest AUC score of 37.3% and 

 maximum mean distance precision of 46%, which are signifi- 

antly improved compared with that of the second-best DeepSTRCF 

racker, which achieves an AUC score of 34.6% and a mean distance 

recision of 39.1%. 

These results above demonstrate that the proposed method has 

 better adaptability to the rapid changes of the target appear- 

nce while ensuring the robustness of the tracker, and therefore 

an achieve more robust and accurate target tracking. 
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Fig. 6. Success plots and the Precision plots on OTB2015(a), UAV123(b) and LaSOT(c). 
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.3.3. Attribute based comparison 

In this section, we further perform an attribute-based analysis 

f all the methods respectively on the OTB2015, UAV 123 and La- 

OT datasets. 

OTB2015 In OTB2015 dataset, all the sequences are annotated 

ith 11 different attributes, which correspond to 11 common diffi- 

ulties and challenges that may exist in the tracking process. These 

1 attributes are: Fast Motion, Background Clutter, Motion Blur, De- 

ormation, Illumination Variation, In-Plane Rotation, Low Resolu- 

ion, Occlusion, Out-of-Plane Rotation, Out of View, and Scale Vari- 

tion. 

Fig. 7 shows the comparison of the AUC scores of the track- 

rs on all 11 attributes in OTB2015. It can be found that there are

1 coordinate axes originating from the center of the Fig. 7 , and 

ach coordinate axis represents one of the above-mentioned at- 

ributes. On each visual attribute axe, the AUC scores of trackers 

re arranged from the center of the figure to the edge in order 

rom small to large, and the AUC scores on all attributes of the 

ame tracker are connected to generate a polygon. Therefore, as 

ar as a single attribute is concerned, the tracker with a high AUC 

core is arranged near the edge of the figure. And the tracker has a 
9 
tronger comprehensive ability to deal with the above 11 tracking 

roblems if its polygon is larger. 

As can be seen from Fig. 7 , the polygon corresponding to OURS 

s the largest, indicating that tracker OURS has the strongest com- 

rehensive ability to deal with 11 kinds of interference factors. On 

he attribute axis of the In-plane Rotation, the AUC score of OURS 

s about 68%, the highest, indicating that the tracking accuracy of 

he proposed tracker is the highest when the target has in-plane 

otation. The following second-best ASRCF tracker achieves an AUC 

core of about 61%. As can be see, the tracker OURS has superior 

UC scores on all above attributes except the Background Clutter. 

oreover, the tracking performance of OURS is significantly im- 

roved on four attributes, namely Fast Motion, Motion Blur, Low 

esolution and Out of View. In order to explain the tracking per- 

ormance of the above four attributes in more detail, success plots 

nd precision plots on these four attributes are presented respec- 

ively in Fig. 8 (a)–(d). 

It can be clearly seen in Fig. 8 , the red curve corresponding to 

racker OURS is always higher than that corresponding to other 

rackers. For example, in the Low-Resolution attribute shown in 

ig. 8 (c), the OURS tracker achieves the highest AUC score of 65.7% 
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Fig. 7. Comparison of the AUC scores on all visual attributes (OTB2015). 

Fig. 8. Success plots and Precision plots on four attributes (OTB2015). 
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nd the highest mean distance precision of 95.2%, which has en- 

anced by 6.4% and 14.4% respectively than those of the ASRCF 

racker. 

UAV123 The UAV123 dataset contains 12 attributes correspond- 

ng to the common challenges in unmanned aerial object tracking. 

hese 12 attributes are: Illumination Variation, Scale Variation, Par- 

ial Occlusion, Full Occlusion, Out of View, Fast Motion, Camera 

otion, Background Clutter, Similar Object, Aspect Ratio Change, 

iewpoint Change and Low Resolution. Similar to the Figs. 7 and 9 

hows comparison of the AUC scores of the trackers on all the 12 

ttributes in UAV123. 

It can be observed from Fig. 9 that compared with other track- 

rs, the OURS tracker achieves higher AUC scores on attributes in- 

luding Aspect Ratio Change, Camera Motion, Fast Motion and Out 

f View. For example, on the Aspect Ratio Change axis, the OURS 

racker reaches the highest AUC score of about 47%, while the AUC 

cores of the other comparison trackers on this attribute are all 
10 
elow 45%. This shows that the proposed spatial-temporal regular- 

zation can adaptively adjust the filter training constraint according 

o the target appearance change. Therefore, the OURS tracker has 

 better adaptability to severe appearance variation such as target 

osition and scale changes, and achieves more accurate and stable 

racking. 

Furthermore, the OURS tracker outperforms the other track- 

rs significantly on four attributes, namely Background Clutter, 

llumination Variation, Partial Occlusion and Viewpoint Change. 

ig. 10 (a)–(d) presents the success plots and precision plots on 

hese four attributes respectively. 

It can be found in Fig. 10 that the red curve corresponding to 

he OURS tracker is always higher than that corresponding to other 

rackers and significantly improved. For example, in the Illumina- 

ion Variation shown in Fig. 10 (b), the OURS tracker achieves the 

ighest AUC score of 51.7% and the highest mean distance preci- 

ion of 78.2%, which is better than those of the second-performing 
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Fig. 9. Comparison of the AUC scores on all visual attributes (UAV123). 

Fig. 10. Success plots and Precision plots on four attributes (UAV123). 
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racker by 7.1% and 9.1%. This shows that the proposed method has 

trong robustness to the changes of illumination in the tracking 

cene. 

LaSOT We further perform attribute-based analysis on the La- 

OT dataset, which contains 14 attributes corresponding to the 

ommon challenges in object tracking. Similar to the Figs. 10 and 

1 (a)–(d) presents the success plots and precision plots on four at- 

ributes including Camera Motion, Deformation, ROtation and Scale 

ariation respectively. 

It can be found in Fig. 11 that the red curve corresponding to 

he proposed tracker is always higher than that corresponding to 

ther trackers. For example, in the Rotation shown in Fig. 11 (c), 

he OURS tracker achieves the highest AUC score of 34.9% and 

he highest mean distance precision of 43.4%, which is better than 

hose of the second-performing tracker by 3.8% and 8.5%. This 

hows that the proposed method has strong robustness against the 

arget appearance deformation in the tracking scene. 

.3.4. Tracking performance 

In order to compare the tracking performance of the track- 

rs more intuitively, Fig. 12 shows the comparison of the tracking 
11 
ounding boxes in some frames of 6 videos including MotorRolling, 

atrix, DragonBaby, Person16, Car3_s and Car16_2. 

As can be seen from the Fig. 12 , compared with other methods, 

he red bounding box representing the OURS tracker can track the 

osition and scale change of the targets more stably and accurately. 

he OURS tracker has better robustness to various interference fac- 

ors. For example, in the video sequence named MotorRolling, it 

an be found that all the trackers can accurately capture the tar- 

et in frame #23. However, in frame #31, the DSR_DCF, DeepSTRCF 

nd ECO trackers cannot adapt to the drastic changes of the tar- 

et appearance caused by the in-plane and out-of-plane, and have 

 large tracking deviation, but the OURS tracker can still track the 

arget accurately, After the frame #68, no trackers except the OURS 

racker can accurately locate the target whose appearance is con- 

tantly changing. The comparison results on motorRolling demon- 

trate that the OURS tracker has good adaptability to the in-plane 

otation, out-of-plane rotation and scale change of the target. In 

ddition, it can be seen from other videos in Fig. 12 that the track- 

ng accuracy and robustness of the OURS7 tracker outperform to 

hat of other trackers in the case of fast motion, out-of-plane rota- 

ion, partial occlusion and camera viewpoint change, etc. 
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Fig. 11. Success plots and Precision plots on four attributes (LaSOT). 

Fig. 12. Ccomparison of the tracking bounding boxes. 
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. Conclusion 

This paper proposes an adaptive spatial-temporal regularization 

odel based on the target appearance variation in filter training. 

oreover, a novel filter training objective function based on the 

roposed adaptive regularization model and its solution algorithm 

re also presented. The proposed method enhances the tracker’s 

daptability to target appearance variation and robustness to inter- 

erence. The tracking accuracy of the proposed tracker in various 
12 
racking scenes such Rotation, Deformance, Illumination Variation 

nd Mast Motion is significantly improved. However, in the long- 

erm tracking task, the object may be blocked or fade out of view 

or a long time. In these situations, the proposed tracking method 

s easy to overfit the interference factors that exist for a long time, 

hus cannot identify the target accurately. Therefore, it is necessary 

o design a tracker for long-term tracking scenarios in the feature 

ork. 
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ppendix A 

The filter training objective function in Eq. (8) is defined as, 

 

 t = arg min ̂ f t 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 ̂

 x d t · ̂ f d t − ̂ y t 

∥∥∥∥∥
2 

l 2 

+ 

λ1 

2 

D ∑ 

d=1 

∥∥̂ f d t 

∥∥2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w ∗
(̂ f d t − ̂ f d t−1 

)∥∥2 

l 2 
(A.1) 

Let the ̂ g = ̂

 f t be the introduced auxiliary variable, the 

q. (A.1) can be rearranged as, 

 

 t = arg min ̂ f t 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 ̂

 x d t · ̂ f d t − ̂ y t 

∥∥∥∥∥
2 

l 2 

+ 

λ1 

2 

D ∑ 

d=1 

∥∥̂ g d t 

∥∥2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w ∗
(̂ f d t − ̂ f d t−1 

)∥∥2 

l 2 
(A.2) 

We define, 

p 
(̂

 f t 
)

= 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 ̂

 x d t · ̂ f d t − ̂ y t 

∥∥∥∥∥
2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w ∗
(̂ f d t − ̂ f d t−1 

)∥∥2 

l 2 
(A.3) 

nd 

 ( ̂  g t ) = 

λ1 

2 

D ∑ 

d=1 

∥∥̂ g d t 

∥∥2 

l 2 
(A.4) 

Then the optimization problem of the Eq. (A.1) can be defined 

s, 

inimize p 
(̂

 f t 
)
+ q ( ̂  g t ) 

subject to 

̂ f t −̂ g t = 0 

(A.5) 

Here, we denote the optimal value of the problem in 

q. (A.5) as, 

 

∗ = inf 
{

p 
(̂

 f t 
)
+ q ( ̂  g t ) | ̂  f t −̂ g t = 0 

}
(A.6) 

Then the augmented Lagrangian function of the Eq. (A.5) is 

ormed as, 

 

(̂
 f t , ̂  g t , ̂  s 

)
= p 

(̂
 f t 
)
+ q ( ̂  g t ) + ̂

 s T 
(̂

 f t −̂ g t 

)
+ 

η∥∥̂  f t −̂ g t 

∥∥2 

l 2 
2 

13 
= 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 ̂

 x d t · ̂ f d t − ̂ y t 

∥∥∥∥∥
2 

l 2 

+ 

λ1 

2 

D ∑ 

d=1 

∥∥̂ g d 
∥∥2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w ∗
(̂ f d t − ̂ f d t−1 

)∥∥2 

l 2 

+ 

D ∑ 

d=1 

̂ s d 
T (̂ f d − ̂ g d 

)
+ 

η

2 

D ∑ 

d=1 

∥∥̂ f d t − ̂ g d 
∥∥2 

l 2 
(A.7) 

here the ̂  s = 

(̂ s 1 , . . . , ̂  s D 
)

is the Lagrange multiplier, and the η a 

enalty factor. Let ̂  h = 

1 
η
̂ s , the Eq. (A.7) can be written into a con- 

ise form, 

 

(̂
 f t , ̂  g , ̂  h 

)
= 

1 

2 

∥∥∥∥∥
D ∑ 

d=1 ̂

 x d t · ̂ f d t − ̂ y t 

∥∥∥∥∥
2 

l 2 

+ 

λ1 

2 

D ∑ 

d=1 

∥∥̂ g d 
∥∥2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w ∗
(̂ f d t − ̂ f d t−1 

)∥∥2 

l 2 

+ 

η

2 

D ∑ 

d=1 

∥∥̂ f d t − ̂ g d + ̂

 h 

d 
∥∥2 

l 2 
(A.8) 

The ADMM algorithm is adopted by alternately solving the fol- 

owing three subproblems, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1 : ̂  f ( 
i +1 ) 

t = arg min ̂ f t 

1 
2 

∥∥∥∥ D ∑ 

d=1 ̂

 x d t · ̂ f d t − ̂ y t 

∥∥∥∥
2 

l 2 

+ 

λ2 

2 

D ∑ 

d=1 

∥∥(
1 + 

̂ ψ ( t ) 
)

∗ ̂ w ∗
(̂ f d t − ̂ f d t−1 

)∥∥2 

l 2 
+ 

η
2 

D ∑ 

d=1 

∥∥̂ f d t − ̂ g d + ̂

 h d 
∥∥2 

l 2 

Q2 : ̂  g ( i +1 ) = arg min ̂ g 

λ1 

2 

D ∑ 

d=1 

∥∥̂ g d 
∥∥2 

L 2 
+ 

η
2 

D ∑ 

d=1 

∥∥̂ f d t − ̂ g d + ̂

 h d 
∥∥2 

l 2 

Q3 : ̂  h 

( i +1 ) = ̂

 h 

( i ) + ̂

 f ( i +1 ) −̂ g ( i +1 ) 

(A.9) 

Here, we use the Eq. (A.7) to prove the convergence of our fil- 

er training method. It is obvious that the function p 
(̂

 f t 
)

and q ( ̂  g t ) 

re closed, proper and convex. We define the residual r = ̂

 f t −̂ g t , 

nd assume that there exists a saddle point 
(̂

 f ∗t , ̂  g ∗t , ̂  s ∗
)

of the 

 

(̂
 f t , ̂  g t , ̂  s 

)
, which means, 

 

(̂
 f ∗t , ̂  g 

∗
t , ̂  s 

)
� L 

(̂
 f ∗t , ̂  g 

∗
t , ̂  s ∗

)
� L 

(̂
 f t , ̂  g t , ̂  s ∗

)
(A.10) 

It can be proved that the ADMM iterates satisfy the following: 

1) Residual convergence: 

When the number of iterations i → ∞ , r → 0 , i.e., the iterates

approach feasibility. 

2) Objective convergence: 

When the number of iterations i → ∞ , the value of the objec- 

tive function p 
(̂

 f i t 
)
+ q 

(̂
 g i t 
)

→ u ∗. 

3) Dual variable convergence 

When the number of iterations i → ∞ , ̂  s i → ̂

 s ∗, where ̂  s ∗ is a

dual optimal point. 

In order to prove the three properties mentioned above, we 

rstly construct the Lyapunov function as, 

 

i = ( 1 /η) 
∥∥̂

 s i −̂ s ∗
∥∥2 

2 
+ η

∥∥̂ g 

i 
t −̂ g 

∗
t 

∥∥2 

2 
(A.11) 

nd prove the following three inequalities: 

 

i +1 � V 

i − η
∥∥r i +1 

∥∥2 

2 
− η

∥∥̂ g 

i +1 
t −̂ g 

i 
t 

∥∥2 

2 
(A.12) 

 

i +1 − u 

∗ � −
(̂

 s i +1 
)T 

r i +1 + η
(̂

 g 

i +1 
t −̂ g 

i 
t 

)T (−r i +1 −
(̂

 g 

i +1 
t −̂ g 

∗
t 

))
(A.13) 
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i +1 � ( ̂  s ∗) T r i +1 (A.14) 

The proof of the above three inequalities is discussed as follows. 

roof of inequation (A.14) 

Since the 
(̂

 f ∗t , ̂  g ∗t , ̂  s ∗
)

is a saddle point for the augmented La- 

rangian function shown in the Eq. (A.7) , namely 

 

(̂
 f ∗t , ̂  g 

∗
t , ̂  s ∗

)
� L 

(̂
 f i +1 

t , ̂  g 

i +1 
t , ̂  s ∗

)
(A.15) 

Using ̂  f ∗t −̂ g ∗t = 0 , the left-hand side L 
(̂

 f ∗t , ̂  g ∗t , ̂  s ∗
)

= u ∗. With the 

quation that u i +1 = p 
(̂

 f i +1 
t 

)
+ q 

(̂
 g i +1 
t 

)
, the Eq. (A.15) can be written 

s, 

 

∗ � u 

i +1 + ( ̂  s ∗) T r i +1 (A.16) 

hich can prove the inequation (A.14) . 

roof of inequation (A.13) 

Assuming that ̂ f i +1 
t minimizes L 

(̂
 f t , ̂  g i t , ̂  s i 

)
, since the p 

(̂
 f t 
)

is 

losed, proper, convex, and it is subdifferentiable, and so is 

 

(̂
 f t , ̂  g i t , ̂  s i 

)
. The optimality condition is, 

 ∈ ∂L 
(̂

 f i +1 
t , ̂  g 

i 
t , ̂  s i 

)
= ∂ p 

(̂
 f i +1 

t 

)
+ ̂

 s i + η
(̂

 f i +1 
t −̂ g 

i 
t 

)
(A.17) 

Since ̂ s i +1 = ̂

 s i + ηr i +1 , namely ̂ s i = ̂

 s i +1 − ηr i +1 , the 

q. (A.17) can be rearranged as, 

 ∈ ∂ p 
(̂

 f i +1 
t 

)
+ 

(̂
 s i +1 + η

(̂
 g 

i +1 
t −̂ g 

i 
t 

))
(A.18) 

This implies that ̂  f i +1 
t minimizes, 

p 
(̂

 f t 
)

+ 

(̂
 s i +1 + η

(̂
 g 

i +1 
t −̂ g 

i 
t 

))T ̂ f t (A.19) 

A similar argument shows that ̂ g i +1 
t minimizes q ( ̂  g t ) −̂ s i +1 

)T ̂ g t . It follows that, 

p 
(̂

 f i +1 
t 

)
+ 

(̂
 s i +1 + η

(̂
 g 

i +1 
t −̂ g 

i 
t 

))T ̂ f i +1 
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(̂
 f ∗t 
)

+ 
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 s i +1 + η

(̂
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i +1 
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t 

))T ̂ f ∗t (A.20) 

nd that 
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t � q ( ̂  g 

∗
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(̂
 s i +1 

)T ̂ g 

∗
t (A.21) 

Adding the two inequalities above, using ̂  f ∗t −̂ g ∗t = 0 , we can ob- 

ain that, 

 

i +1 − u 

∗ � −
(̂

 s i +1 
)T 

r i +1 + 

(
η
(̂

 g 

i +1 
t −̂ g 

i 
t 

))T (̂
 f ∗t −̂ f i +1 

t 

)
(A.22) 

nd the inequation (A.13) can be proved by substituting the equa- 

ion into the Eq. (A.22) 

roof of inequation (A.12) 

Adding the Eqs. (A.13) and (A.14) , and multiplying through by 2 

ives, 

2 

(̂
 s i +1 −̂ s ∗

)T 
r i +1 + 2 η

(̂
 g 

i +1 
t −̂ g 
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)T 
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)T (̂
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t −̂ g 

∗
t 

)
� 0 (A.23) 

Substituting the ̂ s i +1 = ̂

 s i + ηr i +1 , the 2 
(̂

 s i +1 −̂ s ∗
)T 

r i +1 in 

q. (A.23) can be written as, 

 

(̂
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∥∥r i +1 
∥∥2 

2 
+ η
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(A.24) 

nd substituting r i +1 = 

1 
η

(̂
 s i +1 −̂ s i 

)
into the first two items of 

q. (A.24) , we can obtain that, 

2 

η
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(A.25) 
14 
Since ̂ s i +1 −̂ s i = 

(̂
 s i +1 −̂ s ∗

)
−

(̂
 s i −̂ s ∗

)
, the Eq. (A.25) can be 

ritten as, 
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(A.26) 

Using the Eq. (A.26) to replace the in Eq. (A.23) , we can obtain

hat, 

1 

η
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∥∥̂
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� 0 (A.27) 

Substituting the ̂ g i +1 
t −̂ g ∗t = 

(̂
 g i +1 
t −̂ g i t 

)
+ 

(̂
 g i t −̂ g ∗t 

)
into the 

q. (A.28) , ∥∥r i +1 
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)
(A.28) 

nd the Eq. (A.28) can be rewritten as, ∥∥r i +1 + 

(̂
 g 
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t −̂ g 
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t 

)∥∥2 
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+ η
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)
(A.29) 

Substituting the ̂  g i +1 
t −̂ g i t = 

(̂
 g i +1 
t −̂ g ∗t 

)
−

(̂
 g i t −̂ g ∗t 

)
into the last 

wo items of the Eq. (A.29) gives, ∥∥r i +1 + 
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(A.30) 

Replace the η
∥∥r i +1 

∥∥2 

2 
+ 2 η

(̂
 g i +1 
t −̂ g i t 

)T 
r i +1 + 

 η
(̂
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)
in Eq. (A.27) using the Eq. (A.30) , 

e can obtain that, 
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According to the definition of the Eq. (A.11) , the Eq. (A.31) can 

e rearranged as, 
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(A.32) 

Since, 
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(
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)
(A.33) 

o show the inequation (A.12) , it now suffices to show that 

 η
(
r i +1 

)T (̂
 g i +1 
t −̂ g i t 

)
> 0 , and it is known that, 
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nd 
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hus, 
((̂

 s i 
)

−
(̂

 s i +1 
))T (̂

 g i +1 
t −̂ g i t 

)
� 0 . Substituting ̂  s i +1 = ̂

 s i + ηr i +1 , 

he inequation (A.12) can be proved. 
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