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a b s t r a c t

Predicting the secondary structure of a protein from its amino acid sequence alone is a challenging
prediction task for each residue in bioinformatics. Recent work has mainly used deep models based
on the profile feature derived from multiple sequence alignments to make predictions. However, the
existing state-of-the-art predictors usually have higher computational costs due to their large model
sizes and complex network architectures. Here, we propose a simple yet effective deep centroid model
for sequence-to-sequence secondary structure prediction based on deep metric learning. The proposed
model adopts a lightweight embedding network with multibranch topology to map each residue in a
protein chain into an embedding space. The goal of embedding learning is to maximize the similarity of
each residue to its target centroid while minimizing its similarity to nontarget centroids. By assigning
secondary structure types based on the learned centroids, we bypass the need for a time-consuming
k-nearest neighbor search. Experimental results on six test sets demonstrate that our method achieves
state-of-the-art performance with a simple architecture and smaller model size than existing models.
Moreover, we also experimentally show that the embedding feature from the pretrained protein
language model ProtT5-XL-U50 is superior to the profile feature in terms of prediction accuracy and
feature generation speed. Code and datasets are available at https://github.com/fengtuan/DML_SS.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Protein secondary structure prediction is a fundamental task in
rotein science [1]. A protein is a polymer composed of 20 amino
cid residue types that can perform many molecular functions,
uch as catalysis, signal transduction, transportation and molec-
lar recognition. In particular, the function that each protein
erves is largely determined by its structure, which in turn is
losely related to its amino acid sequence. Therefore, knowing
he structure of proteins is extremely important for drug design
nd disease detection. However, due to the development of ad-
anced sequencing technologies, the gap between the number of
nown protein sequences and the number of determined pro-
ein structures is exponentially widening. Therefore, predicting
rotein structures with computational approaches is the only
ractical solution to narrow this gap. As an important subproblem
n structural bioinformatics, protein secondary structure predic-
ion can help develop an understanding of the relationship be-
ween a protein’s function and its amino acid sequence [2]. More-
ver, accurately predicted secondary structures are useful for
tructural class prediction [3], template-based or template-free
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protein tertiary structure prediction [4], and protein sequence
alignment [5].

The secondary structure of a protein refers to local folded
conformations that form within a polypeptide due to hydrogen
bonding and van der Waals forces. Based on hydrogen bonding
patterns and geometric constraints in the atomic coordinates of a
protein, the DSSP program [6] assigns each residue to one of eight
states: H (α-helix), G (310 helix), I (π-helix), E (extended strand),
B (isolated β-strand), T (turn), S (bend) and L (loop or other irreg-
lar structure). Among the eight states, the α-helix and extended
trand are the two most common regular secondary structure
lements, while the π-helix occurs extremely infrequently. In
articular, the secondary structure is sensitive to single amino
cid residue changes [7]. Moreover, these eight secondary struc-
ure states are often reduced to three states: H, G and I are
educed to helix (H); B and E to strand (E); and the other states to
oil (C). Therefore, protein secondary structure prediction can be
ivided into coarse-grained 3-state prediction and fine-grained 8-
tate prediction. Obviously, the latter can provide more detailed
tructural information and is thus more challenging.
For a given protein, the goal of secondary structure prediction

s to assign a secondary structure type to each amino acid residue
n it based only on its primary sequence information. In general,
he primary sequence of a protein consists of 21 amino acid
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bbreviation letters (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
, Y, and X), where X denotes a nonstandard amino acid type. To
se machine learning methods for secondary structure prediction,
ach amino acid letter needs to be represented as a numeric vec-
or. The simplest method is to use a 21-dimensional orthogonal
ncoding to represent each amino acid, but this method achieves
ow prediction accuracies. At present, the feature representations
idely used in secondary structure prediction are PSSM profile

eatures, HHM profile features and their hybrid. These profile
eatures contain evolutionary information on residues, which are
erived by searching a large-scale protein sequence database for
ultiple sequence alignments. Moreover, the recently proposed
ethods SeqVec [8] and TAPE [9] can provide a distributed rep-

esentation of amino acids, but their reported secondary structure
rediction accuracy is significantly lower than that of the profile
eature. In short, existing methods mainly combine profile fea-
ures and deep neural networks for protein secondary structure
rediction.
Current state-of-the-art secondary structure deep predictors

uch as SPOD-1D [10], SAINT [11] and OPUS-TASS [12] are all
ased on the profile features derived from multiple sequence
lignments. However, these predictors usually have a high com-
utational cost due to their large models and complex network
rchitectures. For example, the model sizes of SPOD-1D and
PUS-TASS both exceed 1 GB. To capture the long-range de-
endence between residues, SAINT further introduces multiple
ttention modules in the deep inception-inside-inception con-
olutional network. Note that secondary structure elements are
etermined by the short- and long-range dependence between
esidues. For example, the α-helix is determined by the short-
ange dependence, while the extended strand is determined
y the long-range dependence. Therefore, the key to accurately
redicting the secondary structure is not to design a complex
etwork architecture specifically to capture the long-range de-
endence between residues, but to better balance the use of
hort- and long-range dependencies when performing the pre-
iction. For this reason, we believe that a reasonably designed
ightweight model can also obtain state-of-the-art secondary
tructure prediction accuracy.
In addition, we note that pretrained protein language mod-

ls such as ESM-1B [13] and ProtTrans [14] have successfully
earned useful biophysical features from large protein sequence
atabases. In particular, the embedding features derived from
hese pretrained models have shown good performance in multi-
le tasks, such as subcellular localization and contact prediction.
ifferent from the profile feature, the embedding feature al-
eady carries the contextual information of the residues, so it
oes not require a deeper network to capture the long-range
ependence between residues. This means that when using the
mbedding feature for secondary structure prediction, the exist-
ng network architectures for the profile feature should not be
sed directly. Moreover, it should be noted that the quality of
he profile feature of a given protein depends on the number
f homologous sequences it has. The fewer the number of ho-
ologous sequences, the worse the quality of the corresponding
rofile feature. In fact, more than 90% of proteins have fewer
omologous sequences [15]. For these proteins, the profile feature
chieves poor secondary structure prediction results. However,
he embedding feature does not have this shortcoming and also
voids performing time-consuming multiple sequence alignment
perations. In summary, it is necessary to develop a secondary
tructure prediction model specifically adapted to the embedding
eature.

For the above motivations, we propose a novel sequence-
o-sequence protein secondary structure prediction method, the
2

deep centroid model, based on deep metric learning. The pro-
posed model is suitable for both the profile feature and embed-
ding feature and adopts a lightweight embedding network with
multibranch topology to map each residue in a protein chain
into an embedding space. Specifically, each secondary structure
category is assigned a centroid vector in the embedding space.
The goal of learning is to maximize the similarity of each residue
to its target centroid while minimizing its similarity to nontarget
centroids. We design three loss functions, hard margin loss, soft
margin loss and softmax loss, to train the proposed model. In the
training process, the stochastic gradient descent algorithm is used
to simultaneously update the embedding network parameters
and the centroid vectors.

The main contributions of this study can be summarized as
follows. (1) We propose a simple yet effective deep centroid
model for protein secondary structure prediction. To the best
of our knowledge, this is the first work that employs a deep
metric learning technique to predict secondary structure. (2)
We perform extensive experiments on six test sets, and the
results demonstrate that our method achieves state-of-the-art
performance with much fewer parameters than existing state-
of-the-art methods. (3) We experimentally show that the em-
bedding feature is superior to the profile feature in terms of
prediction accuracy and computational cost. (4) We demonstrate
that ensembling multiple individual models, which are obtained
by training the proposed model with different initial model pa-
rameter values (containing the initial weight of the embedding
network and the initial value of the centroid vectors), can further
improve the prediction accuracy of the secondary structure.

The rest of the paper is organized as follows: In Section 2,
some related works on protein secondary structure prediction
and deep metric learning are reviewed. Section 3 proposes a novel
sequence-to-sequence secondary structure prediction method
based on deep metric learning. Section 4 presents implementa-
tion details, an ablation study, and comparison results. Finally,
the conclusion is given in Section 5.

2. Related work

2.1. Protein secondary structure prediction

Protein secondary structure prediction has been widely stud-
ied with many machine learning methods, such as neural net-
works [16,17], decision trees [18], support vector machines [19,
20], k-nearest neighbors [21,22], and hidden Markov models [23,
24]. Early works were mainly based on the use of a fixed-size
sliding window to predict the secondary structure type of the
central amino acid residue. Representative prediction methods
include PSIPRED V3.0 [25], JPred4 [26], and DeepCNF [27]. How-
ever, since each residue is treated as an independent sample, such
methods usually do not capture long-range interactions between
residues well. Later, with the increase in available training data,
deep model-based sequence-to-sequence prediction dominated
this field and achieved state-of-the-art performance. For example,
DCRNN [28] used an end-to-end model with a multiscale convo-
lutional neural network and stacked bidirectional gate recurrent
units for sequence-to-sequence secondary structure prediction.
Busia and Jaitly [29] developed a multiscale chained convolu-
tional architecture with next-step conditioning for improving
8-state prediction performance. SPIDER2 [30] employed a bidirec-
tional Long Short-Term Memory (LSTM) network to capture long-
range interactions between residues. Wang et al. [31] proposed
deep recurrent encoder–decoder networks to solve the secondary
structure prediction problem. In [32], six different deep network
architectures were proposed for protein secondary structure pre-
diction. To enable effective processing of local and global inter-
actions between amino acids, Fang et al. [33] designed a deep
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nception-inside-inception network model, named MUFOLD-SS.
eepACLSTM [34] applied the cascaded model of an asymmetric
onvolutional neural network and a bidirectional LSTM network
o perform prediction. Indeed, other variants of the combination
f convolutional networks and bidirectional LSTM networks have
lso been proposed [35]. By ensembling different types of neural
etworks, SPOT-1D [10] showed substantial improvement in sec-
ndary structure prediction. More recently, SAINT [11] utilized a
elf-attention augmented inception-inside-inception network for
-state secondary structure prediction. To simultaneously pre-
ict protein backbone torsion angles and secondary structure,
PUS-TASS [12] adopted a network architecture that integrated a
onvolutional network module, a bidirectional LSTM module and
transformer module. In addition, some single-sequence predic-
ion methods, such as SPIDER3-Single [36], SPOT-1D-Single [37],
nd S4PRED [38], have been proposed for orphan sequences,
hich have no or few homologous sequences; thus, their profile

eatures cannot provide valuable evolutionary information for
rediction.

.2. Deep metric learning

Deep metric learning has been successfully applied to many
ision tasks, including person re-identification [39,40], face recog-
ition [41], and image retrieval [42], and has achieved promising
esults. The goal of deep metric learning is to learn a deep em-
edding so that samples with the same labels remain close in the
mbedding space, while samples with different labels remain far
part from each other. To learn these embeddings, various loss
unctions, such as contrastive loss [43], triplet loss [44], hierar-
hical triplet loss [45], margin-based loss [46], N-pair loss [47],
ngular loss [48], ranked list loss [49], multi-similarity loss [50],
uple margin loss [51], and circle loss [52], have been previously
roposed. It should be noted that the large number of redundant
ample pairs in a minibatch usually slows down convergence
peed and reduces the model capability. Therefore, the key to
he success of these loss functions is to calculate the loss based
n information pairs. To mine the information pairs, sampling
trategies such as semi-hard triplet mining, negative sample min-
ng, distance weighted sampling and pair mining are often used.
oreover, Proxy-NCA [53] proposed using proxies to address the
ampling problem. Subsequently, ProxyNCA++ [54] further im-
roved Proxy-NCA by incorporating several enhancements. Exist-
ng deep metric learning methods are mainly based on pretrained
etwork models and an additional embedding layer for embed-
ing learning. However, in this study, our embedding network
s obtained by training from scratch with randomly initialized
arameters. In particular, the proposed method avoids a time-
onsuming k-nearest neighbor search by performing secondary
tructure type assignment based on the learned centroids.

. The proposed method

In this section, we propose a novel sequence-to-sequence
rotein secondary structure prediction method, the deep centroid
odel, based on metric learning. The schematic overview of the
roposed model is given in Fig. 1. For the kth secondary structure
ategory, let its corresponding centroid in a deep embedding
pace be c(k) ∈ Rd, where d represents the dimension of the
mbedding space, and k ∈ [1, 2, . . . , c], where c is 8 for fine-
rained secondary structure prediction and 3 for coarse-grained
rediction. Our goal is to learn a nonlinear embedding, which is
deep convolutional network parameterized by Θ , to maximize
he similarity between each residue and its target centroid and
inimize the similarity between it and all nontarget centroids. In

his study, the similarity of two vectors in the embedding space
3

Fig. 1. The proposed deep centroid model for protein secondary structure
prediction.

is defined as the dot product between them. For the purpose of
training stability, the embedding space is limited to a unit sphere.
This means that for any vector x in the embedding space, we
have ∥x∥2 = 1. In particular, unlike the centroid in the nearest
entroid classifier, which is obtained by calculating the sample
ean of a specific class in the training data, the centroid in our
odel is the parameter vector that needs to be learned. In the

raining phase, random gradient descent is adopted to jointly
ptimize the parameters of the embedding network and all the
entroid vectors. In the evaluation stage, each amino acid residue
s classified as the class with the most similar centroid. In the
ollowing, we will first introduce the designed deep embedding
etwork and then describe the loss function used to train the
roposed model.

.1. Deep embedding network

Here we first introduce our designed basic building block.
hen, the inception unit is described, which is created by a combi-
ation of the basic building block. Finally, we provide the overall
rchitecture of deep embedding network for protein secondary
tructure prediction.
The basic building block is shown in Fig. 2. Note that X ∈

RN×Min×L is a three-dimensional input tensor, where N is the
batch size, Min is the number of input channels, and L is the
largest protein chain length in a minibatch. In the building block,
the input tensor X is passed through the first convolutional
block, which has a one-dimensional convolution layer (Conv1D)
with M filters of kernel size 1, followed by a batch normaliza-
tion layer (BN) and Hardswish activation function f (x) = x ·
min(max(0,x+3),6)

6 [55]. Here we constrain M to be an even value.
Then, the output of the first convolutional block is divided into
two parts evenly along the channel dimension by the channel
split operator. The content of the first part remains unchanged
for feature reuse. For the second part, dropout is applied first
to reduce overfitting, and then its output is fed into the second
convolutional block. Note that in this convolutional block, the
kernel size is 3 and the output channel size is M/2. Finally, the
depth concatenation operation is performed to merge the output
of the two branches, which is followed by another dropout.

Protein secondary structure is determined by both local and
nonlocal interactions between amino acid residues. Therefore, to
better capture such complex relationships, the embedding net-
work should adopt a multibranch topology to enrich the feature
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Fig. 2. Illustration of the basic building block.

Fig. 3. The Inception unit.

space by fusing information with diverse receptive field sizes. To
this end, we further build an inception unit based on the designed
basic building block. As illustrated in Fig. 3, the inception unit
contains two branches. One branch consists of two consecutively
stacked basic building blocks, and the other branch contains only
one basic building block. The final output is the depth concatena-
tion of two branches. In practice, we find that two branches are
sufficient, and further increasing the number of branches does
not further improve the prediction accuracy of the secondary
structure.

Fig. 4 shows the overall architecture of the proposed embed-
ding network. It includes n consecutively stacked inception units,
followed by a convolutional layer, a ReLU nonlinear activation
layer, a reshape layer, a fully connected layer (FC), and a nor-
malization operator. The n consecutively stacked inception units
are used to capture the local and nonlocal interactions between
amino acid residues. In particular, the first inception unit converts
the channel dimension from Cin to C , and the subsequent units
keep this channel size unchanged, where Cin is the encoding
length of the amino acid residue. Obviously, the channel size
C controls the capacity of our network model. The larger C is,
the more parameters the network requires. For the convolutional
layer, 96 filters with a kernel size of 9 are used to reduce the
channel dimension and increase the receptive field size of the
network. The FC determines the size of the final embedding
dimension d. For each amino acid residue embedding vector x in
the output of the FC, we further use the normalization operator
to project it onto the d-dimensional unit sphere. Specifically, we
4

Fig. 4. The framework of our deep embedding network.

first calculate the mean of x, subtract it from each component of
to obtain the vector x̃, and finally output x̃

max(∥x̃∥2,ϵ) , where ϵ is
he small positive constant to avoid division by zero. In addition,
or each centroid vector, we also applied the same normalization
peration.

.2. The loss function

Let a minibatch consist of N protein chains, with a maximum
rotein chain length of L. Note that different protein chains usu-
lly have different numbers of residues. To ensure that all protein
hains in a minibatch have input features of the same size, we set
he feature vector corresponding to the padding position to a zero
ector. In this work, the padding positions were all located at the
ight end of the shorter protein chain. Moreover, let Z ∈ RN×L×d

e the output tensor of a minibatch after performing the deep
mbedding, and its corresponding label matrix and binary mask
atrix are Y ∈ RN×L and M ∈ RN×L, respectively, where Yij ∈

1, 2, . . . , c] and the entry Mij = 0 indicates a padded position
(i.e., the jth residue in the ith chain does not exist.).

To train the proposed deep centroid model, we designed three
loss functions, hard-margin loss, soft-margin loss and softmax
loss. Inspired by the large margin nearest neighbor classifica-
tion [56], we define the hard margin loss as:

ζHML =
1∑N

i=1
∑L

j=1 Mij

N∑
i=1

L∑
j=1

Mij

⎛⎝∑
k̸=Yij

[
sijk + γ − sijYij

]
+

⎞⎠, (1)

where the operator [•]+ = max(•, 0) is the standard hinge
function, sijk denotes the dot product between Zi,j,: and c(k), and γ
is a positive hyperparameter that controls the similarity margin in
the embedding space. Note that when the similarity of a residue
to its target centroid is γ more than its similarity to all other
centroids, the hinge function has a negative argument and hence
incurs zero loss. In addition, it can be observed that the padded
residue positions make no contribution to the overall loss.

The soft-margin loss replaces the standard hinge function in
the hard-margin loss with the softplus function. In particular,
the softplus function is a smooth approximation of the hinge
function. Therefore, the soft-margin loss can be formulated as
follows:

ζSML =
1∑N ∑L M

N∑ L∑
Mij

⎛⎝∑
u
(
sijk − sijYij

)⎞⎠, (2)

i=1 j=1 ij i=1 j=1 k̸=Yij
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here u(x) = log (1 + exp (βx))/β denotes the softplus function,
and β is a hyperparameter that can be adjusted.

To introduce the softmax loss, we convert the similarity mea-
sure into a probability. For the residue at the jth position in the ith
chain, its probability of selecting the kth centroid as the reference
point can be defined as:

pijk =
exp(τ sijk)∑c
l=1 exp(τ sijl)

, (3)

where τ is a scaling parameter. Obviously, we expect to maximize
the probability pijYij . In particular, maximizing pijYij also means
that nontarget centroids have less chance to be selected as the
reference point. To this end, we define the softmax loss as:

ζSoftmaxLoss = −
1∑N

i=1
∑L

j=1 Mij

N∑
i=1

L∑
j=1

Mij log(pijYij ). (4)

The pseudocode of training the proposed model based on the
softmax loss is given in Algorithm 1. In particular, we adopt a
validation-based early stopping strategy to avoid overtraining the
proposed model.

Algorithm 1 Training of the proposed model
Hyperparameters Setting: the batch size, N; the number of
classes, c; the embedding dimension, d; the channel size, C; the
number of inception units, n; the dropout ratio, p; the scaling
parameter, τ ; the learning rate, η;

nput: the training set,T ; the validation set,V ;
utput: the learned embedding network parameters and cen-
troid vectors;

1: Randomly initialize the embedding network parameters;
2: Randomly initialize the c centroid vectors and normalize

them into unit vectors;
3: for each training epoch do
4: Shuffling the training set T ;
5: for each training iteration do
6: Sample a minibatch from the shuffled training set to

generate a feature tensor X, a label matrix Y,
and a binary mask matrix M;

7: Feedforward the tensor X into the embedding
network to obtain the embedding tensor Z;

8: Calculate the softmax loss according to the Eqs.
(3) and (4);

9: Backpropagation to compute gradient and update
the centroid vectors and network parameters;

0: end for
1: Calculate an evaluation accuracy based on the current

model parameters and the validation set V ;
2: if early stopping criterion is satisfied then
3: return The model parameters with the best

evaluation accuracy;
4: end if
5: end for

4. Experiments

4.1. Datasets

To evaluate the proposed method, we conduct experiments
n six publicly available test sets: CASP12, CASP13, CASP14,
B513, TEST2016, and TEST2018. Table 1 summarizes the detailed
ataset statistics. The first three datasets are derived from the
rotein Structure Prediction Center.1 The Critical Assessment of

1 https://www.predictioncenter.org/.
5

Table 1
Statistics for the six test sets. #Chains = Number of protein chains; #Residues =

Number of residues; #Max = Maximum chain length; #Min = Minimum chain
length.
Dataset #Chains #Residues #Max #Min

CASP12 47 13718 1494 75
CASP13 41 12217 756 41
CASP14 33 9049 2194 19
CB513 513 84119 754 20
TEST2016 1213 287877 699 30
TEST2018 250 56654 615 31

Structure Prediction (CASP) on the website holds a community-
wide competition every two years to determine state-of-the-art
techniques in modeling protein structure from amino acid se-
quences. Since 1994, the CASP has held 14 sessions, and its
released target protein structure prediction lists have been widely
used as benchmark test sets for protein structure prediction.
In this study, we use the three recently released target lists,
CASP12, CASP13, and CASP14. For each target list, PDB IDs are
first downloaded from the website, and then the corresponding
primary and secondary structure sequences are extracted from
the FASTA format file ss.txt2 provided by the RCSB PDB according
to the PDB IDs. Finally, the obtained sequences are further filtered
by deleting protein chains with > 25% sequence identity. CB513 is
a well-known benchmark dataset constructed by Cuff and Barton
that has been used to evaluate many protein secondary structure
predictors. In addition, TEST2016 and TEST2018 are constructed
by [10] and can be obtained from the website.3 TEST2016 is
composed of 1213 proteins deposited on the PDB database from
June 2015 to February 2017. TEST2018 consists of 250 high-
quality proteins with resolution < 2.5 Åand R-free < 0.25 that
were deposited on the PDB database from January 2018 to July
2018. In particular, the maximum protein chain length present in
both datasets did not exceed 700.

For the first four test sets, CASP12, CASP13, CASP14, and
CB513, we use a large nonhomologous dataset, cullpdb_pc25_
res2.5_R1.0_d200416_chains13482, downloaded from the PISCES
server [57] to construct their corresponding training set and
validation set. This dataset contains 13,482 protein chains with
resolution < 2.5 Å, R-value < 1.0, and pairwise percent sequence
identity < 25%. The secondary structure sequence of each chain
is extracted from the ss.txt file. In particular, if the file dose
not contain corresponding structural information for the chain,
it will be deleted. Moreover, the protein chains with less than
50 or more than 800 amino acids are also removed. The final
dataset contains 12,510 protein chains. To ensure that this dataset
does not have homology with each test set, it is further filtered
by deleting sequences with greater than 25% sequence identity
with each test set. After filtering, the numbers of protein chains
corresponding to the four test sets CASP12, CASP13, CASP14, and
CB513 are 12376, 12453, 12504, and 12012, respectively. For
each of these filtered protein chains, we randomly select 512 pro-
tein chains as the validation set and the remaining protein chains
are taken as the training set. Furthermore, for the latter two test
sets, TEST2016 and TEST2018, we use their default training set
(10,029 protein chains) and validation set (983 protein chains). It
should be noted that the redundancy between the two test sets
and their corresponding training and validation sets was removed
by using BlastClust with a 25% sequence identity cutoff.

2 https://cdn.rcsb.org/etl/kabschSander/ss.txt.gz.
3 https://servers.sparks-lab.org/downloads/SPOT-1D-dataset.tar.gz.

https://www.predictioncenter.org/
https://cdn.rcsb.org/etl/kabschSander/ss.txt.gz
https://servers.sparks-lab.org/downloads/SPOT-1D-dataset.tar.gz
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.2. Amino acid encoding

To represent each amino acid residue in a given protein chain
s a numeric vector, we use two amino acid encodings: profile-
ased hybrid encoding and embedding encoding. As in [10,11],
ur profile-based hybrid encoding consists of seven physicochem-
cal properties, PSSM profile features and HHM profile features.
he seven physicochemical properties of each amino acid in-
lude sheet probability, helix probability, isoelectric point, hy-
rophobicity, van der Waals volume, polarizability and graph
hape index. These property values can be considered position-
ndependent features, which can be obtained from [58]. For a
rotein chain of length L, its PSSM profile feature and HHM profile
eature are matrices of size L × 20 and L × 30, respectively. In
his study, each PSSM profile matrix is generated by performing
he PSI-BLAST program against the Uniref50 database (updated in
ay 2020) with E-value = 0.001 and two iterations. Each HHM

profile matrix is generated by four iterations of HHblits v3.3.0
with default parameters against the database uniprot20_2013_03,
which can be downloaded from http://wwwuser.gwdg.de/~com
pbiol/data/hhsuite/databases/hhsuite_dbs/old-releases/. The two
profile features are position-dependent, and they often contain
evolutionary information derived from sequence homologs. In
particular, this evolutionary information can provide useful in-
formation for accurately predicting protein secondary structure.
However, it should be noted that for some orphan sequences or
low-homology sequences, their profile features can only provide
limited information for prediction because there is no avail-
able evolutionary information. This means that the secondary
structure of low-homology proteins is more difficult to predict ac-
curately. In summary, the feature size of each amino acid residue
in the hybrid encoding is 57. To prevent the data scale from
affecting the network training, we perform data normalization on
the features of the hybrid encoding. Specifically, we first calculate
the mean and standard deviation of each feature based on the
training set and then transform the features of all data into a
distribution with a mean of 0 and a standard deviation of 1.

Based on the massive protein sequence databases BFD,
UniRef50 and UniRef100, recent works, including ESM-1b [13]
and ProTrans [14], have successfully learned useful informa-
tion from sequence data, which can be transferred to protein
function or structure prediction tasks, by using unsupervised
learning to train advanced language models such as BERT [59]
and T5 [60]. In particular, the output embedding of the pretrained
language model contains the biophysical properties of the pro-
tein sequence. In this study, we use the output of the encoder
of the pretrained model ProtT5-XL-U50 [14] as the embedding
feature. ProtT5-XL-U50 is a transformer-based language model
with 3 billion parameters, which is first trained on the BFD
database and then fine-tuned on the UniRef50 database. During
pretraining, it uses the AdaFactor optimizer with an ‘‘inverse
square root’’ learning rate schedule for optimization. To obtain
the embedding feature of a given protein chain, we use its
primary sequence as the input of ProtT5-XL-U50 and then run
the model in half-precision to obtain the output of the encoder.
In the output embedding, the feature dimension corresponding
to each residue is 1024. Obviously, the embedding feature is also
position-dependent since it captures the contextual information
of each residue.

4.3. Evaluation metrics

To evaluate the performance of the proposed method, we
adopt two widely used measurements, per-residue accuracy and
segment overlap measure (SOV) [61]. Let S be a set of the sec-
ndary structure conformational states, where S = {H, G, I, E, B, T,
6

S, L} for 8-state prediction and S = {H, E, C} for 3-state prediction.
The per-residue prediction accuracy of state s is defined as:

Qs = 100 ×
ns

Ns
, s ∈ S, (5)

where ns is the total number of residues that are correctly pre-
dicted to be state s, Ns is the total number of residues that are of
state s. The overall per-residue prediction accuracy is defined as:

Q|S| = 100 ×

∑
s∈S ns∑
s∈S Ns

, (6)

where |S| denotes the number of states in the set S.
Another metric, segment overlap measure (SOV), is calcu-

lated using secondary structure segments rather than individual
residues, and is thus a structurally more meaningful metric. To
calculate SOV, all observed and predicted secondary structure
sequences need to be divided into segments. In particular, the di-
vided segments need to satisfy two constraints: (1) Only one con-
formational state can occur in a segment. (2) Segments adjacent
to each other in position cannot be in the same conformational
state. For a given protein chain, let O = {o1, o2, . . . , om} be the set
of its observed segments, and P = {p1, p2, . . . , pn} be the set of
its predicted segments. For each state s, let Ω̃s be the set of all the
overlapping pairs of segments (o, p), where o ∈ O and p ∈ P are
both in state s and have at least one residue overlapping. If o ∈ O
is a segment in state s, and there are no overlapping segments in
the set P that are in the same state, then the set consisting of all
these o’s is called Ψ̃s. Moreover, let Ωs and Ψs be the union of all
Ω̃s and Ψ̃s derived from a dataset to be evaluated, respectively.
Then, the overall SOV can be defined as follows:

SOV|S| = 100 ×

∑
s∈S

∑
(o,p)∈Ωs

[
minov(o,p)+∆(o,p)

maxov(o,p) × l(o)
]

∑
s∈S

[∑
(o,p)∈Ωs

l(o) +
∑

o∈Ψs
l(o)

] , (7)

where l(o) is the length of segment o, minov(o, p) is the length of
the actual overlap between o and p, maxov(o, p) is the length of
the total span of o and p, and ∆(o, p) is defined as the minimum
of four integers maxov(o, p) − minov(o, p), minov(o, p), ⌊l(o)⌋,
and ⌊l(p)⌋.

4.4. Implementation details

We utilize the PyTorch framework throughout all the ex-
periments. During training, the minibatch size is set to 32. In
particular, we only use random sampling to construct a mini-
batch and do not use any sample mining strategy. The AdamW
optimizer with a weight decay of 0.001 is utilized for model op-
timization. The learning rate is set to 0.001 and is kept constant.
Moreover, the early stopping criterion is satisfied when the over-
all per-residue accuracy on the validation set does not increase
for 8 consecutive epochs. We performed our experiments with
an NVIDIA GTX TITAN X GPU, Intel i7-8700K CPU, and 32 GB
memory.

Additionally, it should be noted that the two amino acid en-
codings have significantly different feature dimensions, and the
embedding encoding captures the contextual information of each
residue. To this end, we use different parameter settings to con-
struct the embedding network. Specifically, for profile-based hy-
brid encoding, a deeper embedding network is used to capture
the long-range interaction between amino acid residues. The
number of inception units n is set to 5, and the channel size C
is set to 448. For the embedding encoding, we set n to 2 and C
to 1024. In practice, we found that a deeper network does not
improve the prediction accuracy of the secondary structure. How-
ever, for the embedding dimension d, we adopt the same setting
for the two encodings and set it to 32. In the ablation study, we
will analyze the influence of these parameters on the prediction
performance of the proposed method. Moreover, the dropout
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Table 2
The eight-class prediction results of the proposed method under different loss functions on the CB513 test set.
Loss function Hyperparameter Hybrid feature Embedding feature

Q8 SOV8 Q8 SOV8

Hard margin loss

γ = 0.01 73.74 71.41 74.98 72.77
γ = 0.04 74 71.33 75.38 73.04
γ = 0.07 74 71.52 75.19 72.81
γ = 0.1 73.91 71.42 75.46 72.99
γ = 0.13 74.17 71.67 75.37 73
γ = 0.16 73.88 71.6 75.24 72.63
γ = 0.19 73.94 71.22 75.3 72.84
γ = 0.22 74.13 71.58 75.33 72.67

Soft-margin loss

β = 5 74.11 71.35 75.2 72.8
β = 10 73.93 71.55 75.29 72.56
β = 15 74.08 71.53 74.99 72.66
β = 20 74.14 71.83 75.14 72.69
β = 25 73.51 70.98 75.21 72.45
β = 30 74.1 71.7 75.18 72.63
β = 35 73.93 71.13 75.16 72.75
β = 40 73.64 71.1 75.09 72.79

Softmax loss

τ = 2 74.34 71.59 75.34 72.86
τ = 6 74.29 71.95 75.48 73.14
τ = 10 74.27 71.48 75.57 72.87
τ = 14 74.14 71.46 75.56 72.98
τ = 18 74.49 71.7 75.54 73.22
τ = 22 74.43 71.87 75.52 73.14
τ = 26 74.52 72.16 75.5 73.24
τ = 30 74.14 71.58 75.58 73.29
ratio in the basic building block is set to 0.2 in all experiments.
Considering the high dimensionality of the embedding feature,
we applied dropout at a ratio of 0.5 during training. For the
profile-based feature, we did not use dropout. In particular, for
the convenience of comparison, we named the proposed method
DML_SS. Our source code, datasets and models are available at
https://github.com/fengtuan/DML_SS.

4.5. Ablation study

To evaluate the proposed method, we conduct extensive ex-
eriments on test set CB513 and its corresponding validation set
o analyze the impact of loss functions, network hyperparameters
nd amino acid encoding strategies.

.5.1. Impact of loss functions
In this study, we implement three loss functions, hard margin

oss, soft-margin loss and softmax loss, to train the proposed
odel. It should be noted that each loss function has a hyper-
arameter. To explore the impact of the loss functions on the
erformance of the proposed model, we perform comparative ex-
eriments on the CB513 dataset based on both the profile-based
ybrid feature and embedding feature. The eight-class prediction
esults of the proposed method under the three loss functions
re shown in Table 2. Here, we use the overall metrics Q8 and
OV8 as evaluation criteria. It can be observed that the softmax
oss outperforms the hard margin loss and soft-margin loss in
ost cases. Note that the softmax loss can also provide predictive
robabilities. Therefore, we choose it as the default loss function.
n particular, considering that the optimal hyperparameters cor-
esponding to the two encoding features are different, we simply
et the scaling parameter τ to 18 in the subsequent experiments.
In addition, considering that jointly optimizing multiple loss

unctions can improve the performance of deep metric learning
ethods, we further analyze the impact of combined losses on

he prediction accuracy of the proposed model. To train the
roposed model using multiple loss functions, we defined the
ombined loss as: ζ = µζSoftmaxLoss + (1 − µ)ζTriplet, where µ ∈

0, 1] is a balanced hyperparameter, ζSoftmaxLoss is our softmax
oss, and ζ is the weighed triplet loss defined in [62], which
Triplet

7

Table 3
The eight-class prediction results of the proposed method under the combined
loss on the CB513 test set.
Hyperparameter Hybrid feature Embedding feature

Q8 SOV8 Q8 SOV8

µ = 0.1 73.3 70.13 75.07 72.68
µ = 0.2 73.76 71.2 75.16 72.69
µ = 0.3 73.84 71.19 75.22 72.4
µ = 0.4 74.4 72.01 75.35 72.88
µ = 0.5 74.05 71.7 75.38 72.89
µ = 0.6 73.97 71.56 75.3 72.67
µ = 0.7 74.58 72.21 75.32 72.83
µ = 0.8 74.04 71.46 75.29 72.92
µ = 0.9 74.49 72.11 75.38 72.99
µ = 1 74.49 71.7 75.54 73.22

adopts the cosine similarity distance to measure the distance
between two residues. In particular, compared to the original
triplet loss, the weighted triplet loss not only avoids introducing
an additional margin hyperparameter but also achieves better
performance in person re-identification [62]. Note that when
µ = 1, the combined loss degenerates into our softmax loss. The
experimental results of the proposed method under the combined
loss with different hyperparameter values are given in Table 3.
As can be seen from the table, the combined loss slightly outper-
forms the softmax loss on the profile-based hybrid feature only
when µ = 0.7 or µ = 0.9. For all other cases, the combined
loss is consistently inferior to the softmax loss. This is obviously
different from person re-identification, where training strategy
based on combined losses typically achieve consistent perfor-
mance gain. There are two possible reasons for this situation:
(1) The task types of the two are different. The protein secondary
structure prediction task contains few categories (3 or 8) and each
category contains many samples. Person re-identification tasks
contain many categories (usually more than 600) and each cat-
egory contains few samples (usually less than 50). (2) For protein
secondary structure prediction, each minibatch is constructed by
randomly sampling of protein chains. In our study, each mini-
batch contains about 5000 to 8000 residues, and the distribution
of classes in a minibatch is imbalanced. However, for person re-
identification, each minibatch is constructed by first randomly

https://github.com/fengtuan/DML_SS
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Fig. 5. The eight-class prediction results of the proposed method under varying embedding dimensions on the two feature representations.
Fig. 6. The eight-class prediction results of the proposed method under different channel sizes on the two feature representations.
sampling P categories and then sampling K images from each
ategory. Obviously, it is relatively difficult for the former to mine
nformative sample pairs compared with the latter. In short, how
o combine multiple losses to improve the prediction accuracy of
he secondary structure needs further study in the future.

.5.2. Impact of network hyperparameters
The designed embedding network has three hyperparame-

ers: the embedding dimension (d), the channel size (C), and
he number of inception units (n). In this section, we simulta-
eously study their impact on the performance of the proposed
ethod under two different feature representations (the profile-
ased hybrid feature and the embedding feature). In particular,
e only change the parameter of interest while keeping other
ptimization parameters at their default values.
Impact of d. We investigate the performance of the proposed

ethod with varying embedding dimensions {8, 16, 32, 48, 64,
6, 128, 256, 512, 768, 1024}. As shown in Fig. 5, the embedding
imension does not significantly influence the eight-class predic-
ion accuracy. We can see that the Q8 accuracies on the validation
et and CB513 test set only fluctuate within 0.5%. It should be
oted that increasing the embedding dimension does not guar-
ntee the improvement of prediction accuracy. This is different
rom fine-grained image retrieval, which usually requires a higher
mbedding dimension to obtain good retrieval performance [50].
ne possible reason is that the number of secondary structure
lasses is low and the lower embedding dimension is sufficient
o provide good class discrimination.

Impact of C . The channel size C determines the width of
he network and thus controls the size of our embedding net-
ork. The results of different width values are shown in Fig. 6.
onsidering that the two features have significantly different
imensions, we use different channel size sets. It can be observed
8

from the figure that for the profile-based hybrid feature, the Q8
accuracy on the CB513 test set increases as the network width
increases when C is not greater than 512. However, when C >
512, further increasing the network width cannot guarantee the
improvement of prediction performance. Moreover, we can see
that the embedding feature also exhibits similar performance.

Impact of n. The number of inception units n controls the
depth of our embedding network. The results of the proposed
method with varying n values are shown in Fig. 7. As shown in the
figure, on the CB513 test set, the accuracy of the proposed method
based on the profile-based hybrid feature reaches a maximum at
n = 5. For the embedding feature, the proposed method does not
show significant performance improvement when n > 2. One
possible reason is that the embedding feature is derived from
the pretrained deep language model and has already captured
the contextual information of each residue. Therefore, it does
not require a deeper embedding network to capture nonlocal
interactions between residues.

It should be noted that the default parameter settings of the
proposed method are determined by our experience and are
not necessarily optimal. In particular, we did not determine the
model parameters based on the best performance on the valida-
tion set. This is because the accuracies on the validation set have
a certain degree of fluctuation and thus cannot provide a good
basis for parameter settings.

4.5.3. Impact of amino acid encoding strategies
Amino acid encoding plays an extremely important role in

accurately predicting protein secondary structure. To investigate
the impact of amino acid encoding strategies on the perfor-
mance of the proposed method, we conduct a comparative ex-
periment on the CB513 test set. Specifically, our experiment
involved seven amino acid encodings: HHM, PSSM, HHM+phys,
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Fig. 7. The eight-class prediction results of the proposed method under varying n values on the two feature representations.
Fig. 8. The 8-state per-residue accuracies (Q8) of the proposed method under different encoding strategies.
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SSM+phys, HHM+PSSM, HHM+PSSM+phys, and embedding en-
oding. The first six encodings are different combinations derived
rom the three basic encodings, HHM, PSSM, and phys (con-
aining 7-dimensional physicochemical features). Among them,
HM+PSSM+phys represents the profile-based hybrid encoding.
onsidering that phys is position-independent, we do not include
t as its own encoding. The per-residue prediction accuracies
f the proposed method under different amino acid encodings
or 8-state and 3-state predictions are illustrated in Figs. 8 and
, respectively. For comparison purposes, we also present the
rediction results on the validation set. Interestingly, for the three
asic encodings, HHM, PSSM, and phys, we find that combining
ny two or all three of them can further improve the prediction
ccuracy of the secondary structure. This is because they contain
omplementary information. In particular, the multiple sequence
lignments (MSAs) that construct the PSSM matrix are mainly
omposed of more homologous sequences, while the MSAs that
enerate the HHM matrix usually contain remote homologous
equences. Moreover, it can be observed that PSSM consistently
utperforms HHM on the validation set but not on the CB513 test
et. The 8-state accuracy of PSSM on the CB513 test set is higher
han that of HHM, but the latter shows better performance in the
-state prediction.
Note that the embedding encoding achieves the best per-

ormance on both the CB513 test set and the validation set.
articularly, on the CB513 test set, the Q8 and Q3 accuracies of
he embedding encoding are 1.05% and 0.87% higher than those

f the profile-based hybrid encoding, respectively. In addition, c

9

ompared with profile-based hybrid encoding, embedding en-
oding also has the following advantages: (1) Feature generation
equires less storage space. Generating the embedding feature
equires the use of the pretrained protein language model ProtT5-
L-U50, the size of which is 11.3 GB. In this study, the protein
equence databases uniprot20_2013_03 and UniRef50 were used
o generate HHM and PSSM profile features, respectively. The size
f uniprot20_2013_03 after decompression is 17.3 GB, and the
ize of the BLAST database created based on UniRef50 is 54.7 GB.
f the most recent databases are used, feature generation will
equire more storage space, as the size of these databases is still
rowing. (2) Feature generation requires less time. Based on the
B513 test set, we made a simple comparison of the time required
o generate the three features. The dataset contains 513 protein
hains. In our experiments, the times taken to generate the em-
edding features, PSSM profile features and HHM profile features
or all protein chains were 116.8 s, 13 789 s and 11615 s, respec-
ively. Therefore, profile-based hybrid encoding is approximately
20 times slower than embedding encoding. Finally, it is worth
entioning that the 3-state prediction accuracy of the embedding
ncoding on the validation set approaches to the theoretical limit
f protein secondary structure prediction (88%–90%) [5].

.6. Comparison with the existing deep predictors

In this section, we compare the proposed method with some
xisting state-of-the-art predictors on the six test sets, CASP12,
ASP13, CASP14, CB513, TEST2016, and TEST2018. Among the
omparison predictors, SPIDER3 [30] is a 3-state predictor based
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Fig. 9. The 3-state per-residue accuracies (Q3) of the proposed method under different encoding strategies.
Table 4
Comparison of eight-class secondary structure prediction results on the six independent test sets CASP12, CASP13, CASP14, CB513, TEST2016, and
TEST2018. Best results are shown in boldface. The symbols ‘‘*’’ and ‘‘**’’ indicate that the reported results come from [10] and [11], respectively. The
symbol ‘‘-’’ indicates that the result is not available. The symbol ‘‘embed ’’ means that the results are based on the embedding feature.
Methods CASP12 CASP13 CASP14 CB513 TEST2016 TEST2018

Q8 SOV8 Q8 SOV8 Q8 SOV8 Q8 SOV8 Q8 SOV8 Q8 SOV8

CNN_BIGRU 73.26 62.31 70.68 57.17 68.17 53.22 71.21 67.65 73.91 70.92 72.78 68.75
DeepACLSTM 73.93 62.69 71.17 59.55 68.69 54.27 71.84 68.76 75.19 73.67 73.42 71.32
DCRNN 72.95 61.03 70.93 57.06 67.85 53.77 71.34 68.33 72.19 68.63 70.6 65.82
DeepCNN 73.81 60.79 71.92 55.38 67.91 51.78 72.44 69.51 74.54 71.56 72.75 69.18
MUFold-SS 74.83 65.46 72.05 58.9 68.83 52.12 73 69.58 76.03 73.67 74.29 71
NetSurfP-2.0* – – – – – – – – – - 73.81 71.14
SPOD-1D* – – – – – – – – 76.03 73.88 74.26 71.45
SAINT** – – – – – – – – 76.23 – 74.48 –
DML_SS 74.87 64.74 72.53 58.23 69.47 54.48 74.49 71.7 76.62 74.6 74.82 72.23
DML_SSembed 76.2 62.76 74.17 60.1 70.22 62.23 75.54 73.22 78.03 75.9 76.48 73.44
l
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on the bidirectional LSTM model. DeepCNN [29] and MUFold-
SS [33] are predictors composed of only the convolutional net-
work. SAINT [11] improved MUFold-SS by combining the self-
attention mechanism with the deep inception-inside-inception
network. CNN_BIGRU [32], DeepACLSTM [34], DCRNN [28], and
NetSurfP-2.0 [35] are cascaded hybrid models of bidirectional
recurrent neural networks and convolutional networks. In addi-
tion, SPOT-1D [10] is an ensemble of 9 models with different
parameter settings, including 3 LSTM models, 3 LSTM-RESNET
models, and 3 RESNET-LSTM models. It should be noted that
all of these predictors are proposed for profile-based features.
Therefore, we only present their results on profile-based hybrid
encoding. For a fair comparison, all predictors should use the
same datasets and input features. To this end, we reproduce
five methods, CNN_BIGRU, DeepACLSTM, DCRNN, DeepCNN, and
MUFold-SS, based on our training/validation/test settings. For
the four complex predictors, NetSurfP-2.0, SPOD-1D, SAINT, and
SPIDER3, we use the results directly reported in the literature.

The eight-class prediction results of the proposed method and
ight existing predictors on the six test sets are given in Table 4.
rom the table, it can be seen that the proposed method DML_SS
onsistently outperforms the eight state-of-the-art predictors on
he four datasets CASP14, CB513, TEST2016, and TEST2018 in
erms of both Q8 and SOV8. On the remaining two datasets
ASP12 and CASP13, the Q8 accuracy of DML_SS is also better
han that of all other methods. Note that the model sizes of
NN_BIGRU, DeepACLSTM, DCRNN, DeepCNN, MUFold-SS,
etSurfP-2.0, and SAINT are 16.2 MB, 23 MB, 18.2 MB, 9.4 MB,
7.8 MB, 108 MB, and 140.9 MB, respectively. However, the model
10
size of DML_SS is only 8.3 MB. This means that DML_SS achieves
better performance with fewer parameters. In addition, regarding
the two amino acid encodings, we can see that embedding encod-
ing is significantly better than profile-based hybrid encoding in
most cases. The only exception is that on the CASP2 dataset, the
SOV8 accuracy of the embedding feature is 1.98% lower than that
of the hybrid feature based on evolutionary information, although
the Q8 accuracy of the former is 1.33% higher than that of the
atter.

Table 5 gives three-class prediction results on the six test
ets CASP12, CASP13, CASP14, CB513, TEST2016, and TEST2018.
t can be observed from the table that DML_SS outperforms the
ive predictors CNN_BIGRU, DeepACLSTM, DCRNN, DeepCNN, and
PIDER-3 in most cases. The performance of DML_SS on the three
arge test sets, CB513, TEST2016, and TEST2018 is consistently
etter than MUFold-SS, while the latter’s performance on the
hree small test sets, CASP12, CASP13, and CASP14 is better than
ML_SS. It should be noted that for the results of MUFold-SS
eported in this study, the optimizer used during training is
damW instead of the original Adam optimizer. In practice, we
ound that the former can improve the prediction performance
f MUFold-SS. On the two datasets TEST2016 and TEST2018, the
OV3 accuracies of DML_SS are higher than those of SPOD-1D, but

its Q3 accuracies are lower than those of the latter. Moreover, we
can see that compared with the profile-based hybrid feature, the
embedding feature has achieved better classification performance
on all six test sets.
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Table 5
Comparison of three-class secondary structure prediction results on the six independent test sets CASP12, CASP13, CASP14, CB513, TEST2016, and
TEST2018. Best results are shown in boldface. The symbol ‘‘*’’ indicates that the reported results come from [10]. The symbol ‘‘- ’’ indicates that the
result is not available. The symbol ‘‘embed ’’ means that the results are based on the embedding feature.
Methods CASP12 CASP13 CASP14 CB513 TEST2016 TEST2018

Q3 SOV3 Q3 SOV3 Q3 SOV3 Q3 SOV3 Q3 SOV3 Q3 SOV3

CNN_BIGRU 83.84 73.45 83.11 69.3 79.43 63.29 84.52 80.22 85.04 81.61 84.17 79.41
DeepACLSTM 83.9 72.47 82.93 68.34 78.51 61 84.51 80.48 85.62 82.6 84.66 80.05
DCRNN 83.91 71.61 82.3 69.47 79.08 60.05 84.28 79.89 83.72 78.39 82.75 75.1
DeepCNN 84.79 71.98 82.66 63.82 78.86 59.45 84.47 78.84 85.14 79.31 84.16 76.83
MUFold-SS 84.84 73.69 83.65 69.39 79.95 60.12 85.51 80.38 85.97 81.98 84.63 79.53
NetSurfP-2.0* – – – – – – – – – - 85.31 78.58
SPOD-1D* – – – – – – – – 86.67 79.52 85.66 78.77
SPIDER-3* – – – – – – – – 84.66 75.62 83.84 73.89
DML_SS 84.66 72.13 83.33 67.97 79 60.37 85.54 81.49 86.1 82.72 84.83 80.5
DML_SSembed 86.08 73.46 84.95 71.07 80.75 65.81 86.41 82.39 87.41 84.51 86.82 82.43
Table 6
The eight-class secondary structure prediction results on the TEST2018 test set.
Methods QL QB QE QG QI QH QS QT Q8 SOV8

KNN 67.79 11.94 84.79 41.85 0 93.34 32.9 57.47 74.55 72.23
DML_SS 65.23 14.37 86.25 37.89 0 94.38 34.49 58.33 74.82 72.23
KNNembed 71.16 15.86 87.31 40.84 0 94.21 34.3 58.61 76.32 73.88
DML_SSembed 71.62 17.54 87.91 37.26 0 94.32 35.92 57.54 76.48 73.44
.

Table 7
The three-class secondary structure prediction results on the TEST2018 test set
Methods QC QE QH Q3 SOV3

KNN 82.2 80.11 90.45 84.82 80.76
DML_SS 80.97 81.56 90.89 84.83 80.5
KNNembed 84.67 83.64 90.72 86.71 82.23
DML_SSembed 84.98 85.26 89.71 86.82 82.43

4.7. Comparison with k-nearest neighbor classification

Each residue in a given protein chain can be mapped into
d-dimensional numeric vector through our embedding net-

work. Therefore, after performing this mapping on all protein
chains in a dataset, we can use the k-nearest neighbor (KNN)
lgorithm to predict secondary structure based on the mapped
raining dataset. In our experiments, the cosine similarity dis-
ance is adopted to perform the k-nearest neighbor search, and
he parameter k is set to 81. For comparison with the proposed
ethod, the embedding dimension d is also set to 32. The eight-
lass and three-class prediction results of the two methods on
he TEST2018 test set are shown in Tables 6 and 7, respectively.
rom these two tables, we can observe that although the two
ethods have different prediction results in single-state accu-

acy measures, they are comparable to each other in terms of
heir overall per-residue accuracy and SOV metric. Moreover, it
hould be noted that the k-nearest neighbor algorithm requires
toring a large amount of training data and performing a time-
onsuming k-nearest neighbor search. However, the proposed
method DML_SS only needs to store c learned centroids and
ses the nearest centroid classifier for classification. Therefore,
ML_SS is significantly faster than KNN in terms of prediction
peed.

.8. Ensemble prediction

The generalization ability of an ensemble model composed of
ultiple individual models is often much better than that of its

ndividual models. In this section, we further improve the predic-
ion accuracy of the secondary structure based on this feature of
he ensemble model. Specifically, our ensemble model consists
f five individual models, which are obtained by training the

roposed method DML_SS with different random seeds {0, 10000,

11
20000, 30000, 40000}. The output of the ensemble model is the
mean of the output of all base models. The prediction results
of the proposed method and its ensemble under two different
feature representations on the TEST2016 and TEST2018 test sets
are given in Table 8. It can be seen from the table that the en-
semble prediction performance of 8-state and 3-state secondary
structures under the two feature representations is consistently
better than that of the individual model. In particular, we find
that ensembling more than five models does not further improve
the prediction accuracy. Moreover, it should be noted that the
random seed only affects the initial weight of the embedding
network and the initial value of the centroid vectors. In fact, we
also try to obtain distinct models by changing the network width
and projection dimension. However, our results suggest that the
performance of the ensemble model has essentially not changed.

5. Conclusion

In this paper, a simple and effective deep centroid model,
named DML_SS, is proposed for both 3-state and 8-state pro-
tein secondary structure prediction based on deep metric learn-
ing. In the proposed DML_SS, each residue in a protein chain is
mapped into an embedding space using a lightweight network
with multibranch topology. The goal of the embedding learn-
ing is to maximize the similarity of each residue to its target
centroid while minimizing its similarity to nontarget centroids.
The three designed loss functions, hard margin loss, soft margin
loss, and softmax loss, can be used to simultaneously optimize
the embedding network and the centroid vectors. After obtaining
the embedding representation of each residue, we can adopt
the nearest centroid classifier or k nearest neighbor algorithm
for secondary structure type assignment based on the cosine
similarity distance. As an extension of DML_SS, we also propose
an ensemble of multiple individual models to further improve
the prediction accuracy of the secondary structure. The proposed
method is evaluated on six publicly available test sets, CASP12,
CASP13, CASP14, CB513, TEST2016, and TEST2018, and experi-
mental results show that it achieves state-of-the-art performance
with a simple architecture and smaller model size.

In addition, we note that protein language models trained on

massive protein sequence data with self-supervised techniques
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Table 8
The prediction results of the proposed method and its ensemble on the TEST2016 and TEST2018 test sets.
Methods TEST2016 TEST2018

Q8 SOV8 Q3 SOV3 Q8 SOV8 Q3 SOV3

DML_SS 76.62 74.6 86.1 82.72 74.82 72.23 84.83 80.5
Ensemble DML_SS 77.29 75.48 86.64 83.73 75.36 73.17 85.44 81.16
DML_SSembed 78.03 75.9 87.41 84.51 76.48 73.44 86.82 82.43
Ensemble DML_SSembed 78.41 76.44 87.66 84.85 76.79 74.14 86.98 82.57
are revolutionizing biological modeling based on sequence infor-
mation. The embedding feature from pretrained language models
not only contains knowledge of intrinsic biological properties but
also avoids expensive multiple sequence alignment operations
against massive protein sequence databases. To our knowledge,
this is the first work to design a secondary structure predictor
specifically for the embedding feature. Extensive comparative ex-
periments have shown that the embedding feature from ProtT5-
XL-U50 significantly outperforms the profile-based hybrid feature
in achieving higher prediction accuracy. We believe that this
advantage will be further extended as the potential of protein
language models is further explored.

In summary, the main advantages of the proposed model
nclude: (1) It achieves state-of-the-art performance for protein
econdary structure prediction; (2) It has a simple network ar-
hitecture and a small model size; (3) It demonstrates for the
irst time that deep metric learning can perform accurate and
ast protein secondary structure prediction; (4) It is applicable to
oth the profile-based hybrid feature and the embedding feature
erived from pretrained protein language models; (5) Based on
he deep embedding representation of residues, both nearest cen-
roid classifier and k-nearest neighbor algorithm can be used for
econdary structure type assignment. Moreover, the limitations
f the proposed model include: (1) Unable to provide domain-
evel protein secondary structure prediction results; (2) Unable to
rovide information about the reliability of its prediction. These
imitations will be addressed in our future studies. In future work,
e intend to: (1) integrate with existing domain prediction tech-
iques, such as FUpred [63] and DNN-Dom [64], to implement
omain-level protein secondary structure prediction; (2) inte-
rate with existing uncertainty quantification techniques [65–70]
o estimate uncertainty in protein secondary structure prediction.
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