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a b s t r a c t

Protein secondary structure prediction (PSSP) is an important task in computational molecular biology.
Recently, deep neural networks have demonstrated great potential in improving the performance of
eight-class PSSP. However, the existing deep predictors usually have higher model complexity and
ignore the class imbalance of eight-class secondary structure data in training. In addition, the current
methods cannot guarantee that the features corresponding to the padded residue positions are always
zero during the forward propagation of the network, which will cause the prediction results of the
same protein chain to be different under varied zero-padding numbers. To this end, we propose a
novel lightweight convolutional network ShuffleNet_SS, which adopts modified 1-dimensional batch
normalization to eliminate the impact of padded residue positions on nonpadded residue positions and
uses the label distribution aware margin loss to enhance the network’s ability to learn rare classes.
In particular, in order to enable ShuffleNet_SS to fully achieve cross-group information exchange,
we further improve the standard channel shuffle operation. Experimental results on the benchmark
datasets including CASP10, CASP11, CASP12, CASP13, CASP14 and CB513 show that the proposed
method achieves state-of-the-art performance with much lower parameters compared to the five
existing deep predictors.

© 2021 Elsevier B.V. All rights reserved.
S

1. Introduction

Predicting the secondary structure of a protein from its pri-
ary sequence is an important task in computational molecular
iology. Proteins are versatile biological macromolecules com-
osed of 20 amino acid types and play vital roles in many
iological processes. Many applications such as the design of
rugs and enzymes require knowledge of the structure of a
rotein in order to determine its function. Experimental methods
uch as X-ray crystallography, NMR spectroscopy and electron
icroscopy used to determine the three-dimensional structure of
roteins are still extremely expensive and time-consuming. The
umber of protein structures currently released by the Protein
ata Bank is still less than 200,000. However, due to the rapid
evelopment of protein sequencing technology, the number of
nown protein sequences in the UniParc database has reached
ore than 300 million. Therefore, to narrow the gap between the
umber of known protein sequences and the number of known
rotein structures, computationally predicting protein structures
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ttps://doi.org/10.1016/j.knosys.2021.107771
950-7051/© 2021 Elsevier B.V. All rights reserved.
is becoming increasingly urgent. Protein secondary structure pre-
diction (PSSP) is a crucial intermediate step for predicting protein
tertiary structure [1]. Accurately predicted protein secondary
structures can be used not only to predict protein structural
classes [2], carbohydrate-binding sites [3], protein domains [4]
and frameshifting indels [5] but also to construct many structural
and functional analysis tools [6,7].

A protein secondary structure is a local folded structure deter-
mined by the interaction of a hydrogen bond donor and acceptor
residues on a polypeptide’s backbone atoms. Based on two main
hydrogen-bonding patterns, ‘‘n-turns’’ and ‘‘bridges’’, Kabsch and
ander [8] divided secondary structures into eight categories: α-

helix (H), 310-helix (G), π-helix (I), isolated β-bridge (B), extended
strand (E), bend (S), hydrogen bonded turn (T) and loop or other
irregular structures (L). Extended strand (E), which can appear
in the form of parallel or antiparallel bridges, is determined by
the long-range interaction between the residues. The remaining
seven classes are mainly determined by the local interaction of
residues. In particular, the limited flexibility of a peptide chain
makes a secondary structure very sensitive to change in the
residues on a polypeptide chain.

Given a protein chain composed of L amino acid residues,
the goal of PSSP task is to assign a correct secondary structure

https://doi.org/10.1016/j.knosys.2021.107771
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107771&domain=pdf
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ategory to each amino acid residue. This prediction task can
e further divided into two categories: three-state prediction
nd eight-state prediction. In three-state prediction, the eight
econdary structure categories are reduced into three categories:
elices (H, G, and I), strands (B and E), and coils (S, T and L). In
articular, early works were mainly focused on three-state pre-
iction due to the limited training data available. Many machine
earning algorithms, such as support vector machines [9–11],
eural networks [12–14], probabilistic graph models [15–17],
nd k-nearest neighbors [18,19], have been successfully used to
erform this coarse-grained prediction. Compared with three-
tate prediction, eight-state prediction can provide more valuable
ocal structural information [20] and is more challenging because
ight states have an extremely imbalanced distribution in protein
tructures.
Inspired by the successful application of deep learning in many

ields, such as image classification and natural language process-
ng, the recently proposed PSSP methods are mainly use deep
eural networks to perform eight-state prediction. SSpro8 [21]
ses an ensemble of 100 bidirectional recursive neural networks
or eight-state PSSP. Chou and Troyanskaya [22] introduce a
onvolutional architecture to the supervised generative stochas-
ic network to perform prediction. In [23], a deep belief net-
ork based on restricted Boltzmann machines was proposed to
redict secondary structures. The DeepCNF [24] utilizes an im-
roved conditional neural field to model the complex sequence-
tructure mapping relationship and interdependency between
djacent secondary structure labels. The DCRNN [25] exploits
ultiscale convolutional neural network and stacked bidirec-

ional gated recurrent units to extract local and global con-
exts. Subsequently, the literature [26] proposed a similar model
alled the CNN_BIGRU. In [27], a deep recurrent encoder–decoder
etwork named the SSREDNs was proposed. DeepACLSTM [28]
dopts asymmetric convolutional networks combined with bidi-
ectional long short-term memory to predict secondary structure.
n SPIDER3 [29], an iterative learning strategy is used to train
he bidirectional recurrent neural network. Literature [30] incor-
orates the next-step conditioning technique into a multiscale
onvolutional neural network. MUFOLD-SS [31] exploits a new
eep inception-inside-inception architecture to extract both lo-
al and nonlocal interactions between amino acids. Recently,
AINT [32] further introduced a self-attention mechanism for the
eep inception-inside-inception network to improve MUFOLD-
S. Moreover, many other deep network variants have also been
roposed to perform eight-state prediction [33–36].
When training a deep secondary structure prediction model, a

pecific number of protein chains need to be randomly selected
rom the training set to form a minibatch. In particular, the length
f protein chains in minibatches is usually not equal due to
he variable length distribution of protein chains. Therefore, it is
ecessary to perform zero padding on shorter protein chains so
hat all protein chains in the minibatch have the same length.
owever, the aforementioned deep secondary structure predic-
ion networks will change the feature vectors corresponding to
he padded positions to nonzero vectors during forward propaga-
ion, which in turn affects the prediction result of the nonpadded
ositions. Specifically, the same protein chain will obtain different
rediction results under varied zero-padding numbers. Moreover,
n the current deep prediction models, all secondary structure
ategories are treated equally during training without considering
hat their distribution is extremely imbalanced. Finally, existing
eep secondary structure predictors usually have larger model
izes and higher computational costs.
To address these issues, we propose a novel eight-state sec-

ndary structure prediction model ShuffleNet_SS based on a

ightweight convolutional network. We first modify the standard

2

1-dimensional batch normalization by introducing a mask matrix
so that the features corresponding to the padding positions do not
participate in the normalization operation and make their corre-
sponding output features all zeros. Then, we design a basic net-
work module by adopting modified batch normalization, depth-
wise separable convolution and channel shuffle. ShuffleNet_SS
is constructed by stacking the basic network modules and thus
has feature reuse ability. In particular, we find that the standard
channel shuffle operation does not fully achieve cross-group
information exchange in the stacked case. To this end, we propose
an improved version that addresses this problem. Furthermore,
considering that the eight-state secondary structures have an
imbalanced class distribution, we adopt the label distribution
aware margin loss [37] that encourages rare classes to have larger
margins to train the proposed network. This can enhance the
network’s ability to learn rare classes without sacrificing the
network’s ability to fit frequent classes. Experimental results on
several benchmark datasets show that ShuffleNet_SS achieves
state-of-the-art secondary structure prediction performance with
considerably fewer parameters.

2. The proposed deep convolutional network

In this section, we introduce a novel deep convolutional net-
work architecture for sequence-to-sequence PSSP. We know that
in order to train a secondary structure neural network model
that performs sequence-to-sequence prediction, it is necessary to
select a fixed number of protein chains from a randomly shuffled
training dataset to form a minibatch. Since the selected protein
chains usually have different lengths, the right side of the shorter
protein chains usually needs to be padded with multiple zero
values until their length is equal to the length of the largest
protein chain in the minibatch. In particular, in order to ensure
that all the padded positions do not affect the feature generation
of other nonpadded positions, the feature vector corresponding
to the former should always be a zero vector during the for-
ward propagation process. However, when the feature data pass
through a batch normalization layer [38] or a convolutional layer
with a kernel width greater than 1, the feature vectors corre-
sponding to the padded positions may become nonzero vectors.
To solve this problem, we modified the standard 1-dimensional
batch normalization by introducing a binary mask matrix and
designed a new network module based on the modified batch
normalization. In the following, we will first describe the 1D
batch normalization with a mask matrix, then introduce the
designed network module, and finally give the overall network
framework for PSSP.

2.1. The 1D batch normalization with a mask matrix

The input of our network model includes two parts: a feature
data tensor and a binary mask matrix. The shape of the feature
data tensor is (N, C, L), where N represents the number of protein
chains in a minibatch, C represents the length of the feature
vector corresponding to each amino acid residue, and L represents
the maximum protein chain length in a minibatch. The size of
the binary mask matrix is (N, L), where 1 indicates a nonpadded
position and 0 indicates a padded position. For given input feature
data for PSSP, standard 1-dimensional batch normalization will
calculate the mean and variance based on the features of the
padded position and the nonpadded position at the same time.
However, the feature vector corresponding to the padded position
is an invalid numeric vector and should not be used to calculate
the minbatch statistics. To this end, we allow 1-dimensional batch
normalization to also receive a binary mask matrix as input. Let
X be the 3D feature data tensor of our normalization layer and M
be its corresponding mask matrix. Then, the mean and variance
can be calculated as follows:
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Fig. 1. Diagram of the designed network module. Conv1D:1D convolutional
layer. DWConv1D:depthwise 1D convolution layer.

µj =

N∑
i=1

L∑
k=1

Mi,kXi,j,k/

N∑
i=1

L∑
k=1

Mi,k j = 1, . . . , C (1)

and

var j =

N∑
i=1

L∑
k=1

Mi,k(Xi,j,k − µj)2/(
N∑
i=1

L∑
k=1

Mi,k − 1) j = 1, . . . , C (2)

Note that the computation of the mean and variance is only
based on the feature data of nonpadded positions indicated by
the mask matrix. After calculating the mean µ ∈ R1×C×1 and
the unbiased variance var ∈ R1×C×1, as with standard batch
normalization, we normalize the input feature tensor by first
subtracting µ, and then dividing by

√
var + ϵ, where ϵ is a

mall positive constant for numerical stability. In addition, the
alculation of the running mean and variance is the same as
tandard batch normalization. For the normalized feature data,
ffine transformation with two learning parameters γ and β is

further performed. It should be noted that the transformation
operation may convert the feature vector corresponding to the
padded position into a nonzero vector. Therefore, we set the
transformation output vectors corresponding to all padded posi-
tions to 0 vectors. This allows the output of the modified batch
normalization to be directly used in any downstream network
unit.

2.2. The designed network module

Our designed network module is shown in Fig. 1. The input
of the module includes two parts: a 3D feature tensor X and a
mask matrix M. It should be noted that the mask matrix M is only
used to perform batch normalization to reduce internal covariate

shift and speed up the network training. Here, we use ‘‘masked

3

Fig. 2. The proposed network architecture for PSSP.

BN’’ to denote 1D batch normalization with a mask matrix. For
the input feature tensor X, the channel split operator is used to
split it into two branches evenly along the channel dimension.
One branch remains unchanged for the purpose of feature reuse.
The other branch uses the depthwise separable 1D convolution
to reduce the computation costs and model size. The depthwise
separable convolution usually consists of a depthwise convolu-
tion and a pointwise convolution [39]. The depthwise convolution
keeps each channel separate and convolves each channel with
the respective filter. Its output is a stack of all the convolved
outputs. Obviously, the depthwise convolution cannot capture
cross-channel dependencies. Therefore, the pointwise convolu-
tion, i.e., a 1D convolution (Conv1D) with a kernel size of 1, is then
used to generate cross-channel features by combining the output
of the depthwise convolution. In our network module, we use
depthwise convolutions with a kernel size of 3. It should be noted
that each side of the inputs of the depthwise convolution is zero
padded by one residue to keep the size of the third dimension
of the feature map fixed. In particular, in order to minimize
memory access costs, the three convolutions in the module all
use the same number of input and output channels according
to the network structure design guidelines given in [40]. Con-
sidering that the Mish function f (x) = x tanh (ln(1 + ex)) [41]
has better properties than the ReLU, we use it as the activa-
tion function. Furthermore, dropout is also introduced to the
branch to prevent network overfitting. The outputs of the two
branches are concatenated together along the channel dimension.
As in [40], we introduce the channel shuffle operation [42] after
concatenation to enable the information in the two branches to
be communicated in the downstream module.

2.3. The overall network architecture

Building on the designed network module, we present the
overall network architecture for eight-state PSSP in Fig. 2. In
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Fig. 3. Channel shuffle with two groups. All input channels are equally divided into two groups, which are marked with yellow and green. The digit indicates the
number of the channel. In particular, we use 0 to denote the padded channel. (a) The standard channel shuffle. (b) The improved channel shuffle. (c) The input is
processed four times continuously by the standard channel shuffle. The first and last channels of the input are fixed at their initial positions and cannot participate
in the information exchange between the two groups. (d) The input is processed four times continuously by the improved channel shuffle. All channels of the input
can be moved between two groups.
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the proposed network, the first layer is a 1D full convolution
with a kernel size of 3, which is followed by a Mish activation
function, masked BN and dropout. It should be noted that the
channel size has changed from Cin to C after performing the
1D full convolution. Then, n basic network modules in the style
of Fig. 1 are repeatedly stacked to capture nonlocal interactions
between residues. The output of the nth module is further fed to
the 1D convolution with a kernel size of 1 to mix up features.
The final fully connected layer is used as a classifier to output a
classification score vector for each residue.

Note that each basic module divides the input feature tensor
into two groups equally along the channel dimension. For basic
modules stacked in the network, the output of the previous basic
module after the channel shuffle operation is fed as the input
to the next basic module. The purpose of introducing channel
shuffle is to enable information to flow between two channel
groups. However, we found that the standard channel shuffle
operation [42] cannot fully achieve cross-group information ex-
change in the stacked case. Fig. 3a shows the operating steps of
the standard channel shuffle. Given an input with 2×m channels,
the standard channel shuffle operation first reshapes it into (2,m)
by transposing and then flattening it back to its original form.
If only the single-step channel shuffle operation is considered, it
can indeed achieve cross-group information exchange very well.
However, in the stacked case as shown in Fig. 3c, the first and
last channels of an input will remain unchanged and cannot
participate in cross-group communication. In particular, for our
network, this means that the content of the first channel of the
output of the nth basic module is the same as that of the first
channel of the input of the first basic module, which will prevent
the network from generating new features during forward prop-
agation and thus weaken the network’s representation capability.

To solve the above problem, we improve the standard chan-
nel shuffle by introducing two additional steps of padding and
cropping. For a given input, the padding step is first performed
to fill an additional channel on both sides of the input along
the channel dimension, then the padded input is processed by
using the standard channel shuffle, and finally the two padded
channels are removed by the cropping step. Fig. 3b shows the
operating steps of the improved channel shuffle. The figure shows
that the improved channel shuffle not only enables two groups to
exchange channel information but can also change the positions
of all channels in the input in a single step. Therefore, when
it is used in the stacked case, it can truly achieve cross-group
information exchange, as shown in Fig. 3d.

We name the proposed network ShuffleNet_SS. In
ShuffleNet_SS, we exploit the depthwise separable convolution to
4

reduce the model size and computational complexity. In particu-
lar, each depthwise convolution only requires 3×C/2 parameters,
which allows the network to increase the receptive field with
fewer parameters. For each basic network module, half of the
input features will remain fixed and participate in the compu-
tation of the downstream modules or units. This not only enables
the network to have feature reuse ability, but also makes the
final outputs have a diverse receptive field size. The maximum
receptive field size of the network is 2×n+3. Moreover, most of
the parameters and computation of ShuffleNet_SS are placed on
the 1D convolutions with a kernel size of 1, which is significantly
different from the existing PSSP network.

3. The loss function

The label distribution of eight-state protein secondary struc-
ture data has a heavy class-imbalance. In particular, the number
of α-helix, the most frequent class, is usually more than 1000
times the number of π-helix, the rarest class. Therefore, when the
standard cross-entropy loss without considering class imbalance
is used for training, the rare classes can only obtain extremely
low classification accuracy due to being overwhelmed by larger
classes during the training process.

To alleviate the above problem, we use label distribution
aware margin (LDAM) loss [37] to train the proposed PSSP net-
work. Let nk denote the number of training residues in the kth
class and the vector γ = [γ1, . . . , γ8], where γk = 1/n1/4

k . The
label-dependent margin of the kth class is defined as follows:
∆k = γk/γmax, where γmax is the maximum value of the vector
. Note that rare classes have a larger margin. Suppose the
redicted logit tensor from the network is Z ∈ RN×L×8, and
ts corresponding target label and mask matrices are Y and M,
espectively. Then, the LDAM loss for each minibatch can be
ritten as:

−
1∑N

i=1
∑L

j=1 Mij

N∑
i=1

L∑
j=1

Mij log
eZijYij−m∆Yij

eZijYij−m∆Yij +
∑

k̸=Yij
eZijk

(3)

where m is a hyperparameter to adjust the margin and is set as
.0 in the experiments. The loss function in Eq. (3) can enhance
he network’s ability to learn rare classes without sacrificing the
etwork’s ability to fit frequent classes. In addition, it should be
oted that different from the standard cross-entropy loss, the
DAM loss requires the use of a normalized fully connected layer
s a classifier. The normalized fully connected layer calculates the
ogit score as:

= τŴT x̂, with x̂ =
x

and Ŵ:,j =
W:,j  , j ∈ {1, . . . , 8} (4)
∥x∥ W:,j
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where x is the feature mapping of a residue, W is the weight
matrix, ∥·∥ denotes the L2 norm, and τ is a scaling factor and is
et as 16 in this study. The bias term b is discarded due to its
egligible impact on the classification performance. The normal-
zed fully connected layer can rectify the imbalance of decision
oundaries and thus improve the classification performance.
In fact, in addition to the LDAM loss, there are other re-

ently introduced losses, such as the class-balanced loss [43],
ocal loss [44], seesaw loss [45], equalization loss [46] and logit
djustment loss [47], that can effectively address the imbalanced
lassification problem with a long-tail distribution. In particular,
he application scenarios of these losses for classification prob-
ems usually assume that the training set is class imbalanced
hile the validation and test sets are class balanced. However, all
atasets used in eight-state PSSP are class imbalanced. In practice,
e observe that only the LDAM loss can improve the prediction
erformance of the protein secondary structure; thus, it is used
s the loss function to train our network.

. Experiments

In this section, we evaluate the effectiveness of the proposed
ethod on PSSP. Specifically, we first introduce the datasets
sed in the experiment and feature representation of residues,
hen describe the implementation details, and finally report the
xperimental results under the different settings.

.1. Datasets

The PISCES server1 can produce lists of sequences from the
Protein Data Bank (PDB) using chain-specific criteria and the mu-
tual sequence identity [48], which is often used to evaluate pro-
tein structure prediction algorithms [22]. Therefore, we used the
file cullpdb_pc25_res2.5_R1.0_d200416_chains13482.fasta pub-
lished by the PISCES server to construct a large nonhomologous
dataset. This file was generated with the following parameter
settings: the maximum resolution was 2.5 Å, the maximum R-
value was 1.0 and the maximum sequence percentage identity
between any two protein sequences was 25%. Furthermore, the
file contained the primary sequence information of the protein
chains and the corresponding PDB ID and chain ID. To obtain
the corresponding eight-class secondary structure information
of these protein chains, we further downloaded the secondary
structure assignment file ss.txt2 generated from the experimental
coordinates using the DSSP program [8]. According to the PDB
ID and chain ID, the corresponding secondary structure sequence
can be extracted from the structure file. In the extraction step,
those protein chains that have no corresponding structural in-
formation in the file ss.txt will be deleted. Moreover, we also
removed protein chains with more than 800 or less than 50
residues. The final nonhomologous dataset consists of 12,510
protein chains and is called the CB12510 dataset. For evalua-
tion purposes, we further randomly divide it into three parts: a
training set (11,486), a validation set (512) and a test set (512).

To evaluate the performance of the proposed methods, we
also use six commonly used datasets CB513, CASP10, CASP11,
CASP12, CASP13 and CASP14 as test sets. The CB513 dataset was
constructed by Cuff and Barton [49] in 2000. The original CB5133
contains 513 nonhomologous protein chains. Some of these pro-
tein chains (such as 1AOZB-1,1AOZB-2 and 1AOZB-3) actually
have the same chain ID and different digital codes. With the
update of the PDB database, the protein structures of some PDB

1 http://dunbrack.fccc.edu/Guoli/PISCES_ChooseInputPage.php
2 https://cdn.rcsb.org/etl/kabschSander/ss.txt.gz
3 http://www.compbio.dundee.ac.uk/jpred/legacy/data/pred_res/513_set.html
5

IDs that appear in CB513 (such as 1FDX, 1CHB, 2GCR, 1GEP, 1WSY,
1KIN and 3BCL) are outdated and replaced by newly released
structures. Beyond this, we found that the primary sequence
information of some protein chains (such as 1DAR-3 and 1TABI-1)
also changed. Therefore, it is inappropriate to still use the original
primary sequences as the test data. In particular, considering
that the released protein secondary structure file ss.txt no longer
divides protein chains with the same chain ID into multiple
digital chains due to the discontinuity of backbone coordinates,
we merge the sequences with the same PDB ID and chain ID
in CB513 into a single chain. In addition, for those sequences in
CB513 whose PDB ID has an outdated structural status, we use
its chain ID and the corresponding replacement PDB ID to extract
its primary sequence and secondary structure from the secondary
structure file. Through the above processing operations, the final
dataset consists of 433 protein chains and is called CB433. The
maximum protein sequence length is 874. Moreover, in order to
construct the five datasets CASP10, CASP11, CASP12, CASP13 and
CASP14, we first downloaded the PDB IDs of the prediction targets
from the website https://predictioncenter.org/. Then, according
to the downloaded PDB IDs, the corresponding protein chains
were extracted from the file ss.txt. It should be noted that a
single PDB ID can correspond to multiple protein chains, and
different protein chains can have the same primary sequence. To
this end, we further filtered the protein chains in each dataset to
remove the sequences with a sequence identity greater than 25%.
Finally, the numbers of protein chains in the five datasets CASP10,
CASP11, CASP12, CASP13 and CASP14 were 92, 84, 47, 41 and 33,
respectively.

In order to investigate the PSSP performance on protein se-
quences with low-quality profile features, we further constructed
a new test dataset called BC40_MSA_30. To construct this dataset,
we first downloaded the BC40 dataset from the website https://
drug.ai.tencent.com/protein/bc40/download.html. The dataset
BC40 contains 36,976 protein chains. In particular, the dataset
BC40, which was produced by MMseqs2 at 40% sequence identity,
is the sequence clustering data released by the website https:
//cdn.rcsb.org/resources/sequence/clusters/bc-40.out on July 28,
2020. Then, each chain in the BC40 dataset was subjected to a
multiple sequence alignment (MSA) search against the Uniref50
database using PSI-BLAST. Finally, the dataset BC40 was further
filtered by deleting protein chains with MSA counts greater than
30. The resulting dataset contains 2009 protein chains and is
called BC40_MSA_30.

For the above eight test datasets, dataset CB12510 must re-
move its homology with each test set before it could be used
as a training set. To this end, for each test dataset, we keep it
unchanged and filter dataset CB12510 to remove sequences with
> 25% sequence identity with the test dataset. After filtering,
the numbers of protein chains in dataset CB12510 correspond-
ing to the eight test datasets CB513, CB433, CASP10, CASP11,
CASP12, CASP13, CASP14 and BC40_MSA_30 were 12012, 11987,
12360, 12336, 12376, 12453, 12504 and 11756, respectively. For
these processed datasets, 512 protein chains were randomly se-
lected as a validation set, and the remaining protein chains were
selected as a training set. Moreover, the distributions of the
eight secondary structure states in the nine datasets CB12510,
CB513, CB433, CASP10, CASP11, CASP12, CASP13, CASP14 and
BC40_MSA_30 are listed in Table 1. As shown in the table, all
datasets have obvious class imbalanced distributions, and the
distributions on different datasets are different.

4.2. Feature representation

For a given protein with L amino acid residues, in order to pre-
ict its secondary structure based on its primary sequence, each

http://dunbrack.fccc.edu/Guoli/PISCES_ChooseInputPage.php
https://cdn.rcsb.org/etl/kabschSander/ss.txt.gz
http://www.compbio.dundee.ac.uk/jpred/legacy/data/pred_res/513_set.html
https://predictioncenter.org/
https://drug.ai.tencent.com/protein/bc40/download.html
https://drug.ai.tencent.com/protein/bc40/download.html
https://drug.ai.tencent.com/protein/bc40/download.html
https://cdn.rcsb.org/resources/sequence/clusters/bc-40.out
https://cdn.rcsb.org/resources/sequence/clusters/bc-40.out
https://cdn.rcsb.org/resources/sequence/clusters/bc-40.out
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able 1
istribution of eight states (L, B, E, G, I, H, S and T) in the used datasets.
Datasets L B E G I H S T

CB12510 0.2456 0.0099 0.2054 0.0361 0.0002 0.3241 0.0756 0.1031
CASP10 0.2531 0.01 0.2259 0.0334 0.0002 0.2734 0.0828 0.1212
CASP11 0.2539 0.0115 0.2473 0.034 0 0.2649 0.0836 0.1047
CASP12 0.2702 0.0077 0.1905 0.0289 0 0.3255 0.0824 0.0948
CASP13 0.2883 0.0105 0.1803 0.0302 0 0.3042 0.0909 0.0956
CASP14 0.2898 0.0143 0.1708 0.0308 0.0044 0.3258 0.0751 0.0890
CB513 0.2114 0.0138 0.2128 0.0368 0.0004 0.3087 0.0981 0.118
CB433 0.2303 0.0133 0.2076 0.0366 0.0003 0.3026 0.0948 0.1145
BC40_MSA_30 0.3207 0.0090 0.1712 0.0240 0.0001 0.3083 0.0815 0.0852
amino acid residue in the sequence needs to be encoded as a nu-
meric vector. In this study, we consider four amino acid encoding
methods: one-hot encoding, residue embedding, position-specific
scoring matrix (PSSM) encoding and MTX encoding. In the protein
sequence database, the primary sequence of a protein is com-
posed of 20 standard amino acid types (A, C, D, E, F, G, H, I,
K, L, M, N, P, Q, R, S, T, V, W and Y) and 6 nonstandard amino
acid types (B, J, O, U, X and Z). In particular, the 6 nonstandard
amino acid types are usually combined into a single type due to
their low frequency of occurrence. Therefore, it can be considered
that the primary sequence consists of 21 amino acid types. To
this end, one-hot encoding represents each amino acid type as
a 21-dimensional numeric vector, in which only one component
is assigned a value of 1, and the remaining components are
set to 0. One-hot encoding is also called orthogonal encoding
because the vector representations of any two amino acid types
are orthogonal to each other.

Different from one-hot encoding, which uses a sparse vec-
or to represent each residue type, residue embedding maps
ach amino acid residue type to a dense vector with a spec-
fied embedding dimension. Residue embedding can be easily
mplemented by using the embedding operation in deep learning
rameworks such as PyTorch and TensorFlow. In particular, in
rder to compare residue embedding with one-hot encoding, we
et the embedding dimension to 21. This means that residue
mbedding requires learning a 21 × 21 embedding matrix, which
eeds to be initialized randomly before learning. Through one-hot
ncoding or residue embedding, a protein sequence of length L
an be expressed as an L×21 feature matrix.
The PSSM and MTX encodings are profile matrices derived

rom the multiple sequence alignments of a target sequence. Such
ncoding contains the evolution information of residues, so it is
enerally regarded as a highly informative feature representation
f protein sequences. The PSSM and MTX profile matrices can
e generated simultaneously by using the PSI-BLAST program.
n our experiments, they were calculated by PSI-BLAST against
he UniRef50 database with an E-value inclusion threshold of
.001 and 2 iterations. The UniRef50 database is a clustered set of
equences from known protein sequences, and all the sequences
ave less than 50% sequence identity. Before using PSI-BLAST,
e used the pfilt program from the psipred package [50] to

ilter the UniRef50 database to remove low-complexity regions,
ransmembrane regions, and coiled-coil segments. When running
SI-BLAST, the parameter out_pssm is used to specify the output
ile name of the binary checkpoint file. After 2 iterations, the
hkparser program from the psipred package is used to extract
he MTX matrix from the output checkpoint file. For a protein
equence of length L, the PSSM matrix and the MTX matrix are
oth L×20, where 20 denotes the 20 standard types of amino
cids. In order to use them as inputs for our deep model, we
ransform each entry in the PSSM matrix into the range (0, 1)
sing the sigmoid function and divide each element in the MTX
atrix by 1000. After processing, the value range of the elements

n the MTX matrix is (−1, 1). Note that both PSSM and MTX pro-
ile matrices are derived from the original ASCII position-specific
atrix, so there is no complementarity between them.
6

4.3. Implementation details

The proposed network is implemented and experimented on
using the PyTorch deep learning framework [51]. Unless explicitly
specified in the experiment, the dropout ratio, the number of
channels, and the number of basic network modules in our work
are set to 0.2, 384 and 10, respectively. The AdamW [52] opti-
mizer with the default hyperparameter values (β1=0.9, β2=0.999,
ϵ = 10−8) is used to update the parameters of the network model.
The learning rate and weight decay are all set to 0.001. In each
training iteration, we randomly select 32 protein chains to form
a minibatch. Moreover, the regularization method early stopping
is used to halt the training of the network model when the
overall per residue accuracy on the held-out validation dataset no
longer improves. The ‘‘patience’’ value of early stopping is set to
5. All experiments are performed on a single NVIDIA GeForce GTX
TITAN X GPU with 12 GB memory. The source code, datasets and
pretrained models have been made available at https://github.
com/fengtuan/ShuffleNet_SS.

4.4. Ablation study

To demonstrate the effect of feature representation and three
hyperparameters (i.e., the number of channels (C), the number
of basic modules (n) and the dropout ratio (p)) and batch nor-
malization (BN) on the performance of the proposed method, we
perform a number of experiments on the CB12510 dataset using
the standard cross-entropy loss. It should be noted that the cross-
entropy loss requires the use of a standard fully connected layer
to calculate the logit score.

Effect of feature representation. The feature representation
of each protein is determined by amino acid encoding methods.
In this section, we analyze the effect of two profile features (PSSM
and MTX) and four hybrid features (PSSM+one-hot, MTX+one-hot,
PSSM+embedding, and MTX+embedding) on the performance of
PSSP. Note that the hybrid features are obtained by concatenat-
ing a sequence feature and a profile feature, the dimensions of
which are 41. Fig. 4 shows the Q8 accuracy of the proposed net-
work under six different feature representations on the CB12510
dataset. The figure shows that the four hybrid features have
significantly better performance than the two single features on
the validation and test sets. This means that the profile feature
and the sequence feature contain complementary information
for prediction. In particular, for the two single features PSSM
and MTX, the latter is obviously better than the former. The Q8
accuracy of PSSM+embedding on the validation set and test set is
0.22% and 0.12% higher than that on PSSM+one-hot, respectively.
In addition, MTX+one-hot performs better than MTX+embedding
on the validation set while its Q8 accuracy on the test set is
slightly lower than that of MTX+embedding. Considering that
the two hybrid features MTX+one-hot and MTX+embedding have
similar classification performances, and that residue embedding
requires additional learning of the embedding matrix, we use the
hybrid feature MTX+one-hot as the input feature of the proposed
network.

https://github.com/fengtuan/ShuffleNet_SS
https://github.com/fengtuan/ShuffleNet_SS
https://github.com/fengtuan/ShuffleNet_SS
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Fig. 4. The performance of the proposed network under different feature
epresentations on the CB12510 dataset.

Fig. 5. The performance of the proposed network under different channel sizes
n the CB12510 dataset.

Effect of the network width. To explore the effect of the
etwork width on the performance of the proposed model, we
onduct comparative experiments under different channel sizes
28, 192, 256, 320, 384, 448, 512. The Q8 accuracy of our network
n the validation and test sets is shown in Fig. 5. The figure shows
hat when the channel size is not greater than 384, the classifica-
ion accuracy on the two datasets increases as the network width
ncreases. In particular, when the network width is 384, the Q8
ccuracy on the validation set reaches the maximum. Therefore,
e use 384 as the default width of the proposed network. More-
ver, it should be noted that the network width not only affects
he classification performance but also determines the model size
nd training time of the proposed network.
Effect of the network depth. The number of basic modules (n)

etermines the network depth of our network. We vary n from 7
o 14 and visualize the results in Fig. 6. It can be observed that
he validation accuracy reaches the maximum at n = 10, while
the test accuracy reaches the maximum at n = 12. In particular, a
deeper network makes it easier for the network to fit the training
data but increases the risk of overfitting.

Effect of the dropout ratio. Fig. 7 shows the Q8 accuracy of
the proposed network under different dropout ratios 0, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3. The figure shows that when p = 0 (i.e., without
using dropout), the proposed network has the worst classification
performance on the validation and test sets. This suggests that
although we have used batch normalization in the proposed
network, dropout is still an effective regularization technique to
overcome network overfitting for PSSP. Note that both validation
accuracy and test accuracy reach the maximum at p = 0.2, so we
use p = 0.2 as the default parameter of the proposed network.

Effect of batch normalization. In order to verify the effec-

tiveness of using ‘‘masked BN’’ for PSSP, we compared it with the

7

Fig. 6. The performance of the proposed network under different ns (ranging
from 7 to 14) on the CB12510 dataset.

Fig. 7. The performance of the proposed network under different dropout ratios
on the CB12510 dataset.

Fig. 8. The performance of the proposed network under different BNs on the
CB12510 dataset.

standard BN. The comparison result is shown in Fig. 8. The figure
shows that the masked BN consistently outperforms the standard
BN on both the validation and test sets. This indicates that elim-
inating the impact of the padded positions on the nonpadded
positions can improve the prediction performance of the eight-
state secondary structure. Furthermore, it should be noted that
when standard BN is used, the padded positions will affect the
feature generation of the nonpadded positions during the forward
propagation process. Hence, in the evaluation phase, standard BN
will cause the same dataset to have slightly different prediction
results under different batch sizes. This is because under different
batch sizes, many protein sequences will have different zero-
padding numbers. In particular, the change in the number of
paddings will result in a very large change in the prediction
results of the shorter sequences. Therefore, in order to avoid this
inconsistency of prediction results, it is also necessary for PSSP to
introduce masked BN.
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able 2
omparison with state-of-the-art methods on the test set of CB12510. Bold indicates the best performance.
Methods QL QB QE QG QI QH QS QT Q8 F1-score

CNN_BIGRU 72.17 0.97 87.93 27.21 0 93.54 17.66 50.73 73.56 44.98
DeepACLSTM 70.61 7.13 87.10 32.50 0 92.93 26.85 55.39 74.25 48.27
DCRNN 71.17 1.62 86.15 33.21 0 91.98 24.71 50.72 73.22 46.00
DeepCNN 72.67 6.65 83.82 30.89 0 93.36 27.91 53.86 74.09 47.94
MUFold-SS 72.67 6.32 87.25 29.78 0 93.42 28.49 55.70 75.00 48.67
ShuffleNet_SS(CE) 72.49 9.81 85.28 36.88 0 93.21 30.76 56.45 75.03 50.03
ShuffleNet_SS(LDAM) 70.12 10.13 86.92 37.29 0 93.07 34.58 57.57 75.16 50.44
d
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4.5. Comparison with state-of-the-art methods

In this section, we compare the proposed methods with the
ive representative state-of-the-art methods CNN_BIGRU [26],
eepACLSTM [28], DCRNN [25], DeepCNN [30] and MUFold-
S [31] on the eight datasets, CB12510, CASP10, CASP11, CASP12,
ASP13, CASP14, CB513 and CB433. Among the five methods,
he first three algorithms are cascaded hybrid models of convo-
utional networks and bidirectional recurrent neural networks.
he latter two algorithms are convolutional networks. The Deep-
NN exploits a multiscale layer with convolution kernel sizes
f 3, 7, and 9 for prediction; and MUFold-SS performs predic-
ion based on a specially designed inception-inside-inception
odule. For a fair comparison, all methods also use the hybrid

eature MTX+one-hot as the input. In particular, to investigate
he influence of the network architecture on the classification
erformance, no additional techniques, such as the next-step
ondition [30], multitask learning [25] and ensemble learning, are
sed.
To evaluate the prediction performance of the eight-state pro-

ein secondary structure, we used two overall accuracy measures,
8 and the F1-score; and eight single-state accuracy measures,

QL, QB, QE, QG, QI, QH, QS, and QT. The comparison results on the
ight datasets are given in Tables 2–9, respectively. In all these
ables, ‘‘CE’’ is an abbreviation for the standard cross-entropy
oss, which means that the corresponding ShuffleNet_SS uses
he cross-entropy loss for training. The results show that Shuf-
leNet_SS outperforms the five existing algorithms in most cases
n terms of the overall accuracy Q8 and F1-score. This is mainly
because ShuffleNet_SS eliminates the impact of padded positions
on nonpadded positions by using modified batch normalization
and reduces the redundancy between connections through fea-
ture reuse, so it can better capture nonlocal interactions between
residues. Although the recurrent neural network can capture
long-range dependencies, the three hybrid models CNN_BIGRU,
DeepACLSTM and DCRNN based on a recurrent neural network do
not show any advantages over the three convolutional networks
DeepCNN, MUFold-SS and ShuffleNet_SS. This may be because
accurate secondary structure prediction requires a good balance
between long-range interactions and local interactions. Moreover,
it should be noted that the model size of ShuffleNet_SS is only 3.9
MB while the model sizes of CNN_BIGRU, DeepACLSTM, DCRNN,
DeepCNN and MUFold-SS are 15.8 MB, 20.5 MB, 18.1 MB, 9.3 MB
and 17.6 MB, respectively. Therefore, ShuffleNet_SS obtains state-
of-the-art prediction performance with the fewest parameters.

In addition, note that the CB433 dataset is constructed by
merging protein chains with the same PDB ID and replacing
the PDB IDs with outdated information in the CB513 dataset. In
particular, the two datasets contain approximately 300 identical
protein chains. Comparing the results in Tables 8 and 9 shows
that the performance on the CB433 dataset is better than that of
the CB513 dataset in terms of the two overall accuracies in most

cases. This indicates that the CB513 dataset is more difficult to

8

predict because it contains incorrect information. Therefore, we
propose replacing it with the CB433 dataset.

Compared with the cross-entropy loss, the LDAM loss achieved
the highest F1-score on all datasets except CASP14. On the CASP14
test set, the F1-score of the LDAM loss is 0.99% lower than that of
the CE loss while its Q8 accuracy is 1.3% higher than that of the
latter. These results demonstrate that the label distribution aware
margin loss for imbalanced classification is an effective technique
for improving eight-state PSSP. Note that on the test set of the
CB12510 dataset, the LDAM loss not only improves the overall
prediction accuracies of Q8 and F1-score but also improves the
single-state prediction accuracy of the three rare classes B, G and
S. However, on the other seven test sets, these three rare classes
do not obtain similar improvements. This is mainly because for
the test set of the CB12510 dataset, the distribution of the eight
states in it is similar to the corresponding distribution on its
training set. For the other seven datasets, these two distributions
have different degrees of differences. In particular, the greater
the difference between the two distributions, the more difficult
the classification. Considering that there are differences between
the class distributions on the training set and the test set and
that they are both imbalanced, many recently proposed losses for
long-tailed data, which usually assume that the class distribution
on the training set is imbalanced and that the distribution on the
test set is balanced, are not suitable to predict eight-class protein
secondary structures. Therefore, the eight-state secondary struc-
ture prediction task is a good benchmark for testing imbalanced
classification techniques.

Due to the extremely imbalanced frequency of occurrence
of the eight-class secondary structures in the protein structure
database, their single-state prediction accuracy differs greatly.
The rare classes I and B are difficult to predict because they
appear less frequently on the training set. As shown in the tables,
the single-state accuracies QI of the rarest class I on all datasets
are all 0% (note that π-helix (I) does not appear in the three
atasets of CASP11, CASP12 and CASP13) while the frequent
lasses H and E have achieved very high prediction accuracy.
n particular, the LDAM loss for imbalanced classification cannot
mprove QI. Moreover, Fig. 9 shows the confusion matrix obtained
ith ShuffleNet_SS (LDAM) on the CB433 dataset. Each entry
f the confusion matrix indicates the percentage at which a
iven true category is predicted to be any category. The figure
hows that the rarest class of the π-helix (I) is mainly incorrectly
redicted as an α-helix (H), a hydrogen bonded turn (T) and an
rregular structure (L). The second rarest class of the isolated β-
ridge (B) is mainly incorrectly predicted as an irregular structure
L) and an extended strand (E). More efforts should be specifically
ade for these rare classes in the future.

.6. Experimental results on the sequences with low-quality profile
eatures

Protein chains with low sequence homology usually have lim-
ted prediction accuracy because their profile features obtained
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able 3
omparison with state-of-the-art methods on the CASP10 dataset. Bold indicates the best performance.
Methods QL QB QE QG QI QH QS QT Q8 F1-score

CNN_BIGRU 73.03 1.22 86.06 25.40 0 94.01 10.52 54.77 72.00 43.58
DeepACLSTM 72.65 9.39 87.22 32.72 0 92.83 24.63 57.86 73.71 48.68
DCRNN 73.34 2.86 84.84 31.50 0 93.91 21.24 53.26 72.70 46.19
DeepCNN 75.25 8.57 83.11 31.87 0 91.85 24.68 62.57 73.71 48.71
MUFold-SS 73.66 4.49 86.97 28.57 0 93.73 23.25 56.55 73.69 47.44
ShuffleNet_SS(CE) 72.12 10.20 87.11 32.60 0 93.65 28.02 62.60 74.64 49.98
ShuffleNet_SS(LDAM) 73.90 11.84 87.18 37.00 0 92.45 27.88 60.62 74.68 50.44
Table 4
Comparison with state-of-the-art methods on the CASP11 dataset. Bold indicates the best performance.
Methods QL QB QE QG QI QH QS QT Q8 F1-score

CNN_BIGRU 74.23 1.15 81.39 24.74 0 92.05 17.41 48.99 70.81 49.73
DeepACLSTM 68.57 3.82 84.36 25.26 0 93.01 19.19 53.56 71.03 50.86
DCRNN 67.62 0.76 83.31 22.94 0 92.85 18.67 52.89 70.26 49.13
DeepCNN 70.57 2.29 81.73 27.96 0 90.43 25.17 53.18 70.74 51.15
MUFold-SS 70.52 3.05 83.35 25.13 0 92.17 22.13 53.10 71.23 51.45
ShuffleNet_SS(CE) 70.66 4.58 83.11 30.54 0 91.19 25.07 53.14 71.41 52.76
ShuffleNet_SS(LDAM) 69.79 4.20 83.66 33.76 0 92.00 25.90 52.14 71.61 53.07
Table 5
Comparison with state-of-the-art methods on the CASP12 dataset. Bold indicates the best performance.
Methods QL QB QE QG QI QH QS QT Q8 F1-score

CNN_BIGRU 72.64 0.94 81.71 27.46 0 94.56 15.83 48.54 72.67 49.97
DeepACLSTM 68.08 3.77 83.77 25.94 0 93.48 22.28 47.08 71.85 50.47
DCRNN 69.54 3.77 84.58 30.48 0 93.57 19.10 47.92 72.38 50.91
DeepCNN 69.48 11.32 83.35 29.47 0 93.75 25.11 49.46 72.86 53.50
MUFold-SS 73.12 6.60 82.55 25.94 0 94.09 21.75 51.69 73.60 52.86
ShuffleNet_SS(CE) 70.40 13.21 82.05 38.04 0 94.65 22.19 54.92 73.69 55.21
ShuffleNet_SS(LDAM) 68.08 15.09 83.66 39.29 0 94.29 25.73 52.77 73.39 56.08
Table 6
Comparison with state-of-the-art methods on the CASP13 dataset. Bold indicates the best performance.
Methods QL QB QE QG QI QH QS QT Q8 F1-score

CNN_BIGRU 75.07 0 76.62 12.20 0 92.17 3.87 47.69 68.78 50.17
DeepACLSTM 68.03 4.69 82.71 28.46 0 93.25 20.45 49.23 70.37 50.11
DCRNN 66.38 0 82.43 23.85 0 94.57 16.22 49.74 69.72 47.26
DeepCNN 65.19 5.47 79.66 28.18 0 93.33 20.45 52.31 69.32 49.61
MUFold-SS 70.64 0.78 80.94 17.07 0 93.17 13.78 48.46 69.71 46.81
ShuffleNet_SS(CE) 66.41 4.69 84.16 29.27 0 93.95 20.36 49.57 70.43 50.43
ShuffleNet_SS(LDAM) 67.52 4.69 83.57 28.18 0 93.60 22.43 48.97 70.63 50.73
Table 7
Comparison with state-of-the-art methods on the CASP14 dataset. Bold indicates the best performance.
Methods QL QB QE QG QI QH QS QT Q8 F1-score

CNN_BIGRU 69.87 0.78 78.78 25.81 0 90.47 12.94 41.86 68.68 46.81
DeepACLSTM 68.73 2.33 79.11 23.30 0 88.60 11.91 40.99 67.59 45.58
DCRNN 70.25 0 76.26 28.67 0 90.91 12.21 39.25 68.29 45.97
DeepCNN 70.75 3.88 78.14 27.24 0 87.52 14.12 42.73 68.12 47.39
MUFold-SS 63.27 3.88 77.23 23.30 0 89.69 12.65 47.83 66.73 46.18
ShuffleNet_SS(CE) 65.56 3.88 79.30 36.92 0 89.15 19.56 44.10 68.17 49.44
ShuffleNet_SS(LDAM) 67.39 2.33 82.92 26.52 0 90.88 18.68 43.98 69.47 48.45
Table 8
Comparison with state-of-the-art methods on the CB513 dataset. Bold indicates the best performance.
Methods QL QB QE QG QI QH QS QT Q8 F1-score

CNN_BIGRU 69.35 2.24 85.28 28.20 0 92.08 24.60 43.77 69.88 44.32
DeepACLSTM 70.41 2.75 83.62 26.32 0 92.17 18.20 46.25 69.38 43.31
DCRNN 72.75 1.03 82.36 27.39 0 92.38 17.56 47.09 69.72 43.26
DeepCNN 70.66 6.28 80.94 36.21 0 91.40 25.35 51.58 70.37 46.18
MUFold-SS 72.63 4.48 84.76 30.59 0 92.50 23.49 50.24 71.37 46.13
ShuffleNet_SS(CE) 70.44 6.45 84.14 38.47 0 92.16 29.17 52.33 71.79 47.74
ShuffleNet_SS(LDAM) 68.47 7.57 86.18 38.21 0 91.26 29.51 54.93 71.87 48.20
through multiple sequence alignments are low quality. In order
to investigate the performance of state-of-the-art deep predictors
on these protein chains, we further performed a comparative
9

experiment on the BC40_MSA_30 dataset. In this experiment,
it should be noted that the training and validation sets have
high-quality profile features, while the test set has low-quality
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able 9
omparison with state-of-the-art methods on the CB433 dataset. Bold indicates the best performance.
Methods QL QB QE QG QI QH QS QT Q8 F1-score

CNN_BIGRU 70.00 1.49 84.12 22.74 0 92.99 16.90 53.42 70.29 43.38
DeepACLSTM 70.75 6.22 83.63 32.76 0 92.87 20.82 52.13 70.98 45.97
DCRNN 70.47 3.04 81.13 28.61 0 91.91 21.73 50.92 69.86 44.40
DeepCNN 71.10 5.73 80.54 30.70 0 90.54 27.56 54.23 70.51 46.15
MUFold-SS 70.75 4.46 83.97 31.21 0 92.25 23.38 53.62 71.20 46.07
ShuffleNet(CE) 70.81 7.21 83.06 38.78 0 92.48 26.74 56.19 72.02 47.98
ShuffleNet_SS(LDAM) 68.22 7.28 85.22 36.36 0 92.53 31.27 55.75 72.17 48.34
Table 10
Comparison of eight-state prediction results on the BC40_MSA_30 dataset. Bold indicates the best performance.
Methods QL QB QE QG QI QH QS QT Q8 F1-score

CNN_BIGRU 61.99 0.12 73.60 12.32 0 91.28 5.56 29.14 63.85 38.84
DeepACLSTM 65.06 1.68 69.09 16.30 0 83.30 8.90 33.15 62.33 39.87
DCRNN 66.88 0.24 73.65 13.65 0 84.79 9.35 31.51 63.97 40.18
DeepCNN 62.13 1.16 73.11 15.54 0 85.97 11.43 34.18 63.17 40.39
MUFold-SS 64.21 0.32 67.57 12.50 0 86.93 9.47 33.60 62.90 39.38
ShuffleNet(CE) 64.84 2.00 73.62 15.04 0 84.37 10.02 32.96 63.41 40.63
ShuffleNet_SS(LDAM) 58.29 2.08 75.40 16.46 0 90.04 13.04 32.85 63.64 41.33
Fig. 9. Confusion matrix obtained with ShuffleNet_SS (LDAM) on the CB433
dataset.

profile features. Table 10 shows the prediction results for the
eight states. As the table shows, the Q8 prediction accuracy of
ll predictors on the BC40_MSA_30 dataset is lower than 64%. In
articular, the Q8 prediction accuracy of ShuffleNet_SS (CE) on the
alidation set is 74.8% while its accuracy on the BC40_MSA_30
est set is only 63.41%. Therefore, low-quality profile features
everely reduce the prediction performance of eight-state PSSP.

In order to improve the prediction accuracy of protein chains
ith low sequence homology, we note that the recently pro-
osed ‘‘Bagging MSA’’ model [53] attempts to enhance low-
uality PSSM features based on the ‘‘Bagging’’ mechanism under
n unsupervised framework. Moreover, PSSM-Distil [54] further
mproves Bagging MSA by using a teacher–student network to
istill knowledge from high-quality PSSM features with con-
rastive learning. To compare these two methods, we further give
he three-state prediction results on the BC40_MSA_30 dataset, as
hown in Table 11. The table shows that the Q3 prediction accu-
acy of PSSM-Distil is only 0.14% higher than that of CNN_BIGRU.
his means that enhancing low-quality profile features does not
rovide a significant improvement over the traditional method.
t should be noted that the experimental results of Bagging MSA
nd PSSM-Distil are from the literature [54]; and the training set,
alidation set, test set and profile features they used are different
rom our experiment. An objective experimental comparison with
10
Table 11
Comparison of three-state prediction results on the BC40_MSA_30 dataset. Bold
indicates the best performance. The symbol ‘‘*’’ indicates that the accuracy data
come from the published literature. The symbol ‘‘-’’ represents that the data are
not available.
Methods QC QE QH Q3

CNN_BIGRU 76.32 66.43 82.11 76.46
DeepACLSTM 74.70 69.02 78.10 74.81
DCRNN 76.16 66.36 79.60 75.54
DeepCNN 74.46 68.19 80.12 75.21
MUFold-SS 80.02 58.63 76.34 74.94
ShuffleNet(CE) 72.20 65.21 83.84 74.81
ShuffleNet_SS(LDAM) 71.62 70.09 83.96 75.45
Bagging MSA* – – – 71.7
PSSM-Distil* – – – 76.6

Bagging MSA and PSSM-Distil cannot be performed at present
since their released source codes cannot be directly used for
model training.

5. Conclusion

In this paper, we propose a novel lightweight convolutional
network ShuffleNet_SS for sequence-to-sequence PSSP.
ShuffleNet_SS is constructed by simply stacking our designed
basic network modules. This not only eliminates the impact of
padded residue positions on nonpadded residue positions in the
forward propagation process of the network by using modified
batch normalization but also fully achieves cross-group informa-
tion exchange through the improved standard channel shuffle
operation. The feature reuse ability of ShuffleNet_SS enables it to
better capture nonlocal interactions between residues. Moreover,
the label distribution aware margin loss is further adopted to en-
hance the network’s ability to learn rare classes. The experimental
results on the nine benchmark datasets demonstrate that the
proposed ShuffleNet_SS achieves state-of-the-art performance
with the fewest parameters compared to the five existing deep
predictors. To the best of our knowledge, this is the first time
that the loss for imbalanced datasets has been introduced into
the field of eight-state deep secondary structure prediction. In
the future, we will investigate more imbalanced classification
techniques based on deep networks to improve the accuracy of
the rare classes 310-helix (G), isolated β-bridge (B) and π-helix

(I) without reducing the overall prediction accuracy.
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