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ABSTRACT
As a newly emerged promising computing paradigm, Multi-access Edge Computing (M
capable of energizing massive Internet-of-Things (IoT) devices around us and novel
applications, especially the computing-intensive and latency-sensitive ones. Mean
featured by the rapid development of cloud-native technologies in recent years, d
ing Artificial-Intelligence (AI) capabilities in a microservice way in the MEC environ
comes true nowadays. However, currently MEC systems are still restricted by the l
computing resources and highly dynamic network topology, which leads to high
deployment/maintenance cost. Therefore, how to cost-effectively and robustly deplo
AI microservices in failure-prone MEC environments has become a hot issue. In this
we consider an edge AI microservice that can be implemented by composing multipl
Neural Networks (DNN) models, in this way, features of different DNN models are
gated and the deployment cost can be further reduced while fulfilling the Quality-of-S
(QoS) constraint. We propose a Three-Dimension-Dynamic-Programming-based alg
(TDDP) to yield cost-effective multi-DNN orchestration and load allocation plans. F
robust deployment of the yield orchestration plan, we also develop a robust micro
instance placement algorithm (TLLB) by considering the three levels of load balance
ing applications, servers, and DNN models. Experiments based on real-world edg
ronments have demonstrated that the proposed orchestration and placement metho
achieve lower deployment costs and less QoS loss when faced with edge node failure
traditional approaches.

bbreviations
eep Neural Network
dge Application Provider
dge Infrastructure Provider
nterprise Service Bus
ternet of things
ulti-access Edge Computing
ervice-Oriented Architecture
uality of Service
uery Count Per Second
roposed microservice orchestration algorithm
roposed microservice placement algorithm

duction
t years have witnessed the prosperity of
ive techniques such as Docker, Swarm, and
ative, which promoted the emergence of
ices architecture [6, 31]. Different from
l Service-Oriented Architecture (SOA) re-
prise service bus (ESB), it splits the whole
ng Wu, Qinglan Peng, Yong jin and Zhentao Hu
e School of Artificial Intelligence, Henan Univer-
zhou, 450046, China. Yunni Xia is with the
omputers, Chongqing University, Chongqing 400044,
corresponding author of this work is Qinglan Peng
g@hotmail.com).
s): 0000-0002-2691-093X (C. Wu);
8908-5201 (Q. Peng); 0000-0001-9024-732X (Y. Xia)

system into a massive lightweight, single pur
and re-deployable applications, which enhance
scalability and reliability of the system and
ize DevOps[40]. Meanwhile, the significant b
throughs in AI (especially in deep neural network
its applications) techniques produce numerous
applications (e.g., augmented reality, metaverse
and intelligent transportation systems[47, 48]), w
greatly changed daily lives. The advanced AI an
croservices techniques promote the prosperity o
bile/Internet of things (IoT) devices and applica
according to the prediction of Cisco, there will be
billing active mobile and IoT devices connected
more than 75% web actions will happen on these
devices[4]. However, due to the restriction of com
ing capabilities and battery life, applications onm
and IoT devices usually choose to invoke AI ser
deployed on the remote cloud to fulfill their funct
requirements.

However, with mobile application providers
end-users increasing demands on high responsiv
and smooth real-time experience, the traditional
computing paradigm can not fulfill the low end-to
service invoking delay requirement[26]. With th
hancement of advanced 5G communication tech
gies, Multi-access Edge Computing (MEC) emerg
tackle this problem. TheMEC paradigm aims to d
computing resources to the edge of networks (w

could be base stations, network sinks, or CDN nodes)

u et al.: Preprint submitted to Elsevier Page 1 of 17
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QoS Requirement

QPS:  500

Response time: 200ms

Accuracy: >= 67.5%

DNN model 

ID
Accuracy

Inference 

complexity

M1 62% 0.24

M2 73% 1.2

M3 78% 3.2

× 8 × 12
r hour 1.5$ per hour 4.2$ per hour

PS 500QPS 500QPS

OR OR

× 4 × 2
r hour 0.6$ per hour 1.4$ per hour

500QPS

+ +

odel

Models Composition

26%
56%

28%

n example of AI microservices mixed deployment.

e pervasive computing capabilities[32]. In
application providers can deploy their mo-
cations to the edge servers which are close
ers reduce latency, and end-users are capa-
oading computing-intensive tasks to nearby
rs in a service-invoking way to overcome the
of limited hardware resources. As a promis-
ting paradigm in the post-cloud computing
he advantages of MEC have been widely con-
d multiple cloud providers are exploring its
ices.
h the MEC paradigm has many advantages,
uted and multiple-access natures also bring
allenges, e.g., the limited computing power
ervers and the uncertain, error-prone net-
nectivity. For edge application providers
ere are also problems with deploying AI mi-
applications on the MEC environments[39].
ple, the AI microservices are usually imple-
y Deep Neural Networks (DNN) models and
multiple DNN models available for the same
ifferent DNN models have different perfor-
.g., inference rates, computing amount, and
r precision). Employing a single DNNmodel

ployment cost and may lead to a bad user exper
resulting from the preference of certain inputs
shown in Figure 1, composing multiple DNN m
to implement a single AI microservice and all
proper request loads to them helps to reduce de
ment costs when fulfilling the Quality-of-Service (
requirements. And this is the cost-effective multi
Model orchestration problem that we are interest
this study.

While for the edge infrastructure providers (
who maintain an edge resource pool and get rev
from providing edge computing resources to
they could serve multi-tenant (e.g., support the de
ment plans from multiple EAPs) at the same time
However, different from the centralized cloud com
ing data centers, the edge resources pool is constr
by distributed edge servers with heterogeneous
figurations, which are prone to resource failure
unavailable. Thus for EIPs, how to place the ed
microservices instances requested by multi-tena
proper edge nodes to reduce the impact of edg
source failures is the robust edge AI microservi
stances placement problem, which is also to be
tigated in this study.

To address the aforementioned challenges, w
pose two approaches (shorts for TDDP and TLL
solve the cost-effective and robust edge AI mic
vices deployment problems from the EAP and EI
spectives respectively. Where the TDDP approa
developed for EAPs, it can be integrated into mic
vices governance frameworks such as Apache D
and Spring Boot. While the TLLB approach is des
for EIPs, it can be integrated into edge resources
ernance systems such as KubeEdge and K3S. T
best of our knowledge, this is the first work con
ing multi-DNN models orchestration for the ed
microservice deployment problem and solving it
both EAP’s and EIPs’ perspectives. The main c
butions of this work are as follows: 1) We pro
the cost-effective and robust edge AI microservic
ployment problem, where edge AI microservice
allowed to be implemented by multi-DNN mode
this way, the advantages of different DNN mode
composed to achieve cost-effectively and QoS
fied edge AI microservice deployment. We pr
two approaches to solve it from the perspectiv
both EAPs and EIPs; 2) For EAPs, we develop
namic programming-based algorithm (TDDP) to
the cost-effective multi-DNN orchestration proble
takes the performance metrics of different DNN
els and the required QoS constraint of the edge A
croservice as inputs and employs a three-dimens
dynamic programming mechanism to find the op
orchestration plan; 3) For EIPs, we develop a
layer-load-balance-aware algorithm to solve the r
edge AI microservice instance placement proble
considers three different levels of load balance
ent an AI microservice suffer from high de-

u et al.: Preprint submitted to Elsevier Page 2 of 17
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el, edge server level, and DNN model level)
ze the impact of edge resource failures on the
microservice instances belonging to multi-
much as possible.
mainder of this paper is organized as fol-
tion II uses two motivating examples to illus-
ost-effective and robust AI microservice de-
problems. Section II introduces our system
d presents the problem formulation of the
problems. The solutions proposed from the
EIP perspectives respectively are described
IV. Section V presents our experimental re-

analysis. Section VI reviews the related stud-
n VII concludes this study and indicates our
cerns.

vating Examples
section, we use two real-world examples to
proposed problems clearer and illustrate the
ignificance of solving them.

nario A
AI microservice selection and composition
y challenges to achieving high response and
service provision[30]. For example, for an
ication provider (EAP), suppose there is a
ognition business (like PictureThis or Plant-
in google play) in its mobile application.

ng that deploying the image classification ser-
emote cloud may lead to long response time
data transmission, with the help of a novel

puting paradigm and microservice architec-
EAP plan to deploy the flower recognition
n a containerized microservice way to the
ers where close to the end-users to improve
xperience.
se the non-functional requirements of the
ognition business are defined as follows: 1)
requirement: the average accuracy of recog-
ult should be higher than 70%; 2) Response
irement: the response time per service in-
should be less than 800 milliseconds; 3)
ut requirement: the flower recognition busi-
support 200 requests per second (i.e., 200
the image classification function to imple-
er recognition business, there could be multi-
odels that can choose (e.g., AlexNet, ResNet,
, ..., etc.), and each model has a different
, recognition accuracy and inference com-
amount). Meanwhile, edge infrastructure
(EIPs) provision edge computing resources
iner-as-a-Service (CaaS) way, and there are
ontainer types with different configurations
to choose from.
wn in Figure 2, under this circumstance, as
he proposed cost-effective multi-DNN mod-

QoS Requirement

QPS:  500

Response time: 200ms

Accuracy: >= 67.5%

500 QPS

Q1: 

Which models should 

be choosed?

Q2:

How many microservice

instance on which type

of container should be

launched?

Q3:

How to distr

load of re

different mo

instances?

Figure 2: Three questions to be solved under edge AI mi
vices orchestration scenario.

to solve: 1) how to choose suitable DNN m
with different QoS to implement the image clas
tion function to fulfill the accuracy requiremen
how many microservice instances should be laun
on what kind of container type to minimize th
ployment cost while fulfilling the throughput re
ment; 3) how to distribute the request load t
lunched instances to fulfill the response time re
ment. Compared with traditional edge AI deploy
approaches that only consider a single DNN m
the proposed multi-model mixed orchestration sc
can fully leverage the QoS features of different
models, draw on each other’s strengths, and fi
reduce the deployment cost by composing the
gether. Besides, different DNN models may prefe
ferent kinds of inputs, and implementing an ed
microservice with multiple DNN models can imp
the user-perceived QoS to some degree. Ther
solving the proposed cost-effective multi-DNN-m
mixed orchestration problem is of great practica
nificance.

APP 1 APP 2 APP

Edge Node 1 Edge Node 2 Edge No

Q1: 

How to place AI microservices

instances to heterogeneous edge 

nodes to achieve load balance?

Operational objectives

SLA : 99.9% Availability

Cost: as low as possible

Available Zone 1 Available 

Q2: 

How to achieve an application 

anti-affinity-aware microservices

placement?

Where to placement?

or

?

Figure 3: Two challenges need to be tackled in edge
croservices placement scenario.

2.2. Scenario B
After get the orchestration plans of their edge A

croservices, EAPs begins to submit the microservi
stance lunch requests (usually described by yma
that specify the container type, application image
orchestration for edge AI microservice aims library dependencies) to EIPs to finalize the microser-
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yment.
lly, an EIP usually manages an edge re-
work that contains a bunch of edge nodes de-
a certain city, it receives multiple mixed or-
n plans submitted by different EAPs and pro-
computing resources in a CaaS way[41]. As
Figure 3, for this EIP, how to properly sched-
bmitted orchestration plans to minimize the
failures is the proposed robust microservice
lacement problem, and it aims to solve: 1)
ace the edge AI microservice instances with
esource requirements to heterogeneous edge
chieve a load balance between them; 2) how
he edge AI microservice instances from dif-
lications fairly to edge nodes to achieve a
ce between different applications. The first
the proposed placement problem is to bal-
resource utilization among edge servers to
probability of server performance deteriora-
ven crash. The second target holds the idea
Put All your Eggs in One Basket”, and once
appen, it guarantees the impact of failures
in application is limited, i.e., all applications
risks of edge resources failure fairly.
hat it is well-recognized that edge resources
prone to encounter failures (e.g., network
ns[17] and server crashes[46]) than cloud

Therefore, in error-prone MEC environ-
e proposed robust microservice instance
t problem is also of great practical signifi-

m Model and Problem
ulation
section, we present our system model and
definitions of cost-effective multiple DNN
xed orchestration problems for mobile appli-
dors, and the robust multiple AI microser-
nce placement problem for edge infrastruc-
ders.

t-Effective Multiple DNN Model
ed Orchestration
C environments, edge infrastructure and re-
roviders deploy edge servers in the 5G core
r User Plane Function (UPF)[23], and em-
resource management platforms (e.g., Ku-
K3S, Akri, ..., etc) to manage them and
omputing services to the mobile application
a serverless way[14]. Meanwhile, mobile

n vendors are allowed to deploy their AI
r functions at the edge end in a microservice
alize dynamic scaling, elastic pricing, and
s integration/delivery. Edge infrastructure
usually provide various kinds of container in-
ith different resource configurations for mo-

bile application providers to deploy their AI mic
vices, and we use 𝑜 to denote the count of ava
container instance types in this study.

An AI microservice can be implemented by m
ple DNN models. For example, models like Re
AlexNet, LeNet, ..., etc, can be employed to i
ment an image classification service. In multiple
model mixed orchestration schema, an AI microse
can be implemented by various microservice inst
that are deployed in containers with different c
urations, these instances have the same function
but might employ different DNNmodels and thus
different QoS. Suppose a mobile application ve
has an AI services 𝑆 (e.g., image classification
split, signature identify, etc) to be deployed at the
platform. The request strength (i.e., query per se
QPS) of AI service 𝑆 is 𝜆, and there are 𝑛 kinds of
models 𝑴 = {𝑀1,𝑀2, ...,𝑀𝑛} available to choic
implementing 𝑆. Different DNN models have d
ent qualities (e.g., the accuracy of classification
precision of text classification, the error rate of a
recognition) and inferential computation, we u
to denote the quality of model 𝑀𝑖, 𝜇𝑖𝑗 to denot
inference speed (i.e., how many requests it can
dle per second) of model 𝑀𝑖 on 𝑗-th type of cont
instances. Let 𝑆𝑖𝑗 denotes the set of microservi
stances that employ model 𝑀𝑖 and chose 𝑗-th ty
container configuration, 𝑤𝑖𝑗 denotes the ratio of
request strength that allocated to the instances i
(∑𝑛

𝑖=1
∑𝑜

𝑗=1𝑤𝑖𝑗 = 1),  denotes the set constr
by all 𝑤𝑖𝑗 . Due to the microservice instances i
same set 𝑆𝑖𝑗 have the same container type, the re
strength of each instance can be calculated as:

𝜆𝑖𝑗 =
𝜆 ⋅𝑤𝑖𝑗

𝑏𝑖𝑗
,

In this way, the request processing of each mic
vice instance can be modeled as an M/M/1 queu
46, 44], and according to Little’s law, the expect
ference time can be estimated as:

𝐼𝑖𝑗 =
1

𝜇𝑖𝑗 − 𝜆𝑖𝑗
.

where 𝜇𝑖𝑗 is the inference rate of the microservi
stances that employ model 𝑀𝑖 and 𝑗-th containe
figuration, and 𝜇𝑖𝑗 − 𝜆𝑖𝑗 > 0.

Let 𝑏𝑖𝑗 denote the number of microservice inst
in set 𝑆𝑖𝑗 ,  denotes the set constructed by all 𝑏
denotes the price of 𝑗-th container configuration
vided by edge infrastructure providers (we consid
demand pricing model in this study, and the billi
tervals are accurate to the seconds). A multiple
model mixed orchestration plan of AI microserv
can thus be denoted as a 2-tuple 𝑃 = (,), an
u et al.: Preprint submitted to Elsevier Page 4 of 17
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nt cost can be calculated as:

) =
𝑛∑
𝑖=1

𝑜∑
𝑗=1

𝑏𝑖𝑗 ⋅ 𝑝𝑗 , (3)

oS of 𝑆 can evaluated as:

) =
𝑛∑
𝑖=1

𝑞𝑖 ⋅
( 𝑜∑

𝑗=1
𝑤𝑖𝑗

)
, (4)

paper, the response time of invoking edge
rvices consists of data transmission time and
erence time [43, 24]. We use 𝑑 to denote the
put data size of the requests to AI microser-
d 𝛽 to denote the average data transmission
ween end-users and edge servers (these data
tained from historical data), the response
equests that dispatched to microservice in-
𝑆𝑖𝑗 can be calculated as:

,) = 𝐼𝑖𝑗 +
𝑑
𝛽
. (5)

ore, given the QoS requirement 𝜙 and the
time constraint 𝜏 of an AI microservice 𝑆,
ective multiple DNN model mixed orchestra-
ems can be formulated as:
in
,)

∶ 𝐶(), (6)
s.t. ∶ 𝑄() ≥ 𝜙, (7)

𝑅𝑖𝑗(,) ≤ 𝜏, ∀𝑖, 𝑗 (8)∑𝑛
𝑖=1

∑𝑜
𝑗=1

𝑤𝑖𝑗 = 1, (9)
1 ≥ 𝑤𝑖𝑗 ≥ 0, ∀𝑤𝑖𝑗 ∈  (10)
𝑏𝑖𝑗 ∈ {0, 1, 2...}. ∀𝑏𝑖𝑗 ∈  (11)

target of problem 𝐏𝟏 is to minimize the
icroservice deployment cost as shown in (6);
(7) indicates that the total weighted QoS

roservice instances meet the mobile applica-
or-defined QoS requirement; constraint (8)
t the response time of all requests should not
e defined constraint; constraint (9) guaran-
ll request loads have been distributed; con-
0) and (11) declare the scope of the feasible
It is obvious that constraints (7-8) are non-
s P1 is a Mixed-Integer-Nonlinear Program-
LP) problem, which is known as an NP-hard

ust Microservice Instance Placement
getting the AI microservice orchestration
ile application vendors will submit their de-
requests (usually represented by YMAL files)
e infrastructure provider to build container-
roservice applications. Generally, an edge

APP 1 APP 2 APP 3

Edge Node 1 Edge Node 2 Edge Node 3

Edge Node 1 Edge Node 2 Edge Node 3

App Placement Plan A

App Placement Plan B

Lo
Ca

A
L

Figure 4: Robust deployment of microservice instances

infrastructure provider could receive multiple de
ment requests from multiple mobile application
dors for different edge AI microservices. Restr
by the failure-prone edge notes connectivity an
fluctuant edge server performance, how to plac
microservice instances from different mobile ap
tions to suitable edge nodes to reduce the QoS de
ration caused by edge network or edge nodes fa
is a key problem.

Edge servers under high load for a long tim
prone to crash, which leads to user-perceived Qo
terioration, thus the load balance of edge server
important metric to evaluate a microservice inst
placement plan. Besides, when an edge server
or lost connection happens, all their hosted mic
vice instances will fail and out of service. The
stances could belong to different mobile applica
from multiple mobile application vendors. As s
in Figure 4, we say placement plan 𝐵 is better th
because the server failure, crash, or lost conne
risks are shared by all applications, which avo
rapid QoS deterioration of a certainmobile applic
Therefore, the load balance of a single mobile ap
tion among all edge servers is also an importan
indicator to evaluate a placement plan.

Suppose an edge infrastructure provider
ages an edge resource pool with 𝑚 edge se
𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑚}, and provider Container
Service (CaaS) to mobile application vendors. W
𝑐𝑘 and 𝑟𝑘 to identify the CPU cores and memory
of edge server 𝑒𝑘 respectively. There are total
croservice orchestration plans 𝑷 = {𝑃1, 𝑃2, ..., 𝑃

mobile application providers’ edge AI microservices

u et al.: Preprint submitted to Elsevier Page 5 of 17
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2, ..., 𝑆𝑙} has been submitted to this provider.
= {𝑠1ℎ, 𝑠

2
ℎ, ...} to denote all instances that to

ed of AI microservice 𝑆ℎ, and it can be ob-
m 𝑆ℎ’ orchestration plan 𝑃ℎ = (ℎ,ℎ).
e function 𝑇 (𝑠) to identify the type of con-
t microservice instance 𝑠 is going to be
functions 𝐶(𝑗) and 𝑀(𝑗) to identify the
., virtual processors) cores and the mem-
ed by the 𝑗-th container configuration, and
unction (𝑠, 𝑘) ∈ {0, 1} to indicate whether
iner that host microservice instance 𝑠 is
edge server 𝑒𝑘. As some edge resource man-
platform as Kuberedge and K3S did, in this
consider the resource utilization of an edge

1
2

[∑𝑚
𝑘=1

∑
𝑠∈𝑆ℎ

(𝑠, 𝑘) ⋅ 𝐶(𝑇 (𝑠))
𝑐𝑘

+ (12)
∑𝑚

𝑘=1
∑

𝑠∈𝑆ℎ
(𝑠, 𝑘) ⋅𝑀(𝑇 (𝑠))
𝑟𝑘

]
.

the resource occupation rate of application
oservice instances on edge server 𝑒𝑘 can be
as:

1
2

[∑
𝑠∈𝑆ℎ

(𝑠, 𝑘) ⋅ 𝐶(𝑇 (𝑠))
𝑐𝑘

+ (13)
∑

𝑠∈𝑆ℎ
(𝑠, 𝑘) ⋅𝑀(𝑇 (𝑠))

𝑟𝑘

]
.

a set of edge AI microserevice orchestration
r an edge infrastructure provide, the robust
vice instance placement problem can be for-
s:

min
()

∶ 1
𝑚

𝑚∑
𝑘=1

(�̄� − 𝑢𝑘)2, (14)

1
𝑚

𝑚∑
𝑘=1

‖𝒗𝒌 − 𝒕‖, (15)

s.t. 𝑢𝑘 ≤ 1, ∀𝑘 (16)
𝑢ℎ𝑘 ≤ 1. ∀𝑘, ℎ (17)

1
𝑚
∑𝑚

𝑘=1 𝑢𝑘 is the mean value of the resource
rates of all edge servers, 𝒗𝒌 = (𝑢1𝑘, 𝑢

2
𝑘, ..., 𝑢

𝑙
𝑘)ce occupation rate of different applications

𝑒𝑘, 𝒕 = (𝑡1, 𝑡2, ..., 𝑡𝑙) the ratio of total resource
y different applications, where

1
2

[ ∑
𝑠∈𝑆ℎ

(𝑠, 𝑘) ⋅ 𝐶(𝑇 (𝑠))
∑𝑚

𝑘=1
∑

𝑠∈𝑆ℎ
(𝑠, 𝑘) ⋅ 𝐶(𝑇 (𝑠))

+ (18)
∑

𝑠∈𝑆ℎ
(𝑠, 𝑘) ⋅𝑀(𝑇 (𝑠))

∑𝑚
𝑘=1

∑
𝑠∈𝑆ℎ

(𝑠, 𝑘) ⋅𝑀(𝑇 (𝑠))

]
.
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Figure 5: Integration and deployment of proposed appro

As shown in (14) and (15), the targets of the p
ment problem 𝐏𝟐 is to achieve load balance am
edge servers and also a load balance among m
applications. Minimizing the variance of edge se
resource utilization helps to achieve a load ba
among edge servers, and reduce their failure
While maintaining the resource occupation rati
different applications on the some edge servers
to their total load ratios helps to spread the risk o
ures fairly among all applications, reduce the s
crash impact on a certain application, and avoid t
cading failures incurred by the rapid deteriorati
the response time of a certain application. Thi
combinatorial optimization problem which can b
mulated to a multiple knapsack problem by per
ing problem reduction, which is known as a NP
one[7]. Therefore, the proposed robust multip
microservice instance placement problem is als
hard.

4. Solutions
For the two problems formulated above sec

we propose a Three Dimension Dynamic Program
based algorithm (shorts for TDDP) and a Three
Load Balance-based heuristic algorithm (short
TLLB) respectively to obtain the orchestration
and the placement decisions.

As shown in Figure 5, the proposed TDDP
rithm can be integrated into the service dynamic
ing module of microservice governance framew
(e.g., Eureka in Spring Cloud and Nacos in S
Cloud Alibaba) to generate a cost-effective de
ment plan (i.e., multiple DNN model mixed or
tration plan in this study) under the constraints
quired QoS. The proposed TLLB algorithm can
tegrated into the container scheduling module of
resource management systems (e.g., Kube-schedu
KubeEdge and K3S) to generate robust container
microservice instance) placement plans to cope
the high dynamic edge network and failure-prone
1.
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ee Dimension Dynamic
gramming-based Algorithm for P1
lem P1, the weight of request load that is al-
a certain set of microservice instances with
NNmodel and container type𝑤𝑖𝑗 is a contin-
ble. However, in real-world production en-
ts, this load distribution information is usu-
sented in the form of a discrete level (e.g.,
ay weight configuration in Spring Cloud [1])
minimal granularity (e.g., 1%, 2%, 5%, etc).
, as the Gateway configuration specification
Cloud, in this study, we consider the mini-
allocation granularity to 𝑔 = 0.01, i.e., 1%,
se a dynamic programming-based algorithm
find the optimal multi-DNN-Model edge AI
ice orchestration plans.

m 1: TDDP for P1
Edge AI microservice 𝑆; Multiple DNN
models 𝑴 for 𝑆; Request strength 𝜆;
QoS constraint 𝜙; Response time
constraint 𝜏
t: Orchestration plan 𝑃 ; 𝑃 ’s deployment
cost 𝐶

ℚ ← ∅
|
P(𝑛, 1, 𝜙)
PlanRetrieval(𝕎,ℚ, 𝑛, 𝜆)
𝑃 ← ( ,), 𝐶

ion DP(𝑖, 𝑗, 𝑘)
𝑖 ⋅ 𝑗 < 𝑘 then
return ∞
= 1 then
𝑐,𝒘, 𝒃 ← OptSubPlan(𝑖, 𝑗 ⋅ 𝜆, 𝜏)
𝕄[𝑖, 𝑗, 𝑘] ← 𝑐, 𝕎[𝑖, 𝑗, 𝑘] ← 𝑗
ℚ[𝑖, 𝑗, 𝑘] ← 𝑘
return 𝑐

∅, 𝑣 ← ∞
𝑥 ← 0 to 𝑗 with step 𝑔 do
𝑐,𝒙, 𝒃 ← OptSubPlan(𝑖, 𝑥 ⋅ 𝜆, 𝜏)
if 𝕄[𝑖 − 1, 𝑗 − 𝑥, 𝑘 − 𝑞𝑖 ⋅ 𝑗] ≠ ∅ then

𝑠 ← 𝕄[𝑖 − 1, 𝑗 − 𝑥, 𝑘 − 𝑞𝑖 ⋅ 𝑥] + 𝑐

else
𝑠 ← DP(𝑖 − 1, 𝑗 − 𝑥, 𝑘 − 𝑞𝑖 ⋅ 𝑥) +𝑐
𝕄[𝑖 − 1, 𝑗 − 𝑥, 𝑘 − 𝑞𝑖 ⋅ 𝑗] ← 𝑠

𝑆 ← 𝑆 ∪ 𝑠

≠ ∅ then
𝑣,𝕄[𝑖, 𝑗, 𝑘] ← min(𝑆)
𝕎[𝑖, 𝑗, 𝑘] ← 𝑔⋅ argmin(𝑆)
ℚ[𝑖, 𝑗, 𝑘] ← 𝑘 − 𝑞𝑖 ⋅ 𝑔⋅ argmin(𝑆)
urn 𝑣

Algorithm 2: OptSubPlan
Input: DNN model ID 𝑖; Allocated request loa

𝜆𝑖; Response time constraint 𝜏;
Container type count 𝑜

Output: Sub-deployment cost 𝑐, Load ratios
on different type of containers 𝒘,
Instances count of different type of
containers 𝒃

1 𝑐 ← 0, 𝒃,𝒘, 𝒈,𝒉 = 𝑂1×𝑜
2 for 𝑗 ← 1 to 𝑜 do
3 𝑔𝑗 ← 𝜇𝑖𝑗 − 1∕𝜏
4 ℎ𝑗 ← (𝜇𝑖𝑗 − 1∕𝜏)∕𝑝𝑗
5 𝒅 ← get the descending order of 𝒉
6 𝒉, 𝒈 ← rearrange 𝒉 and 𝒈 according to order 𝒅
7 while 𝜆𝑖 ≠ 0 do
8 𝑡 ← 𝑑1
9 𝑏𝑡 ← ⌊𝜆𝑖∕𝑔𝑡⌋
10 𝒅, 𝒈,𝒉 ← remove 𝑑1, 𝑔1, ℎ1 from 𝒅, 𝒈, 𝒉
11 𝜆𝑖 ← 𝜆𝑖 − 𝑏𝑡 ⋅ 𝑔𝑡
12 𝑐 ← 𝑐 + 𝑏𝑡 ⋅ 𝑝𝑡
13 for 𝑗 ← 1 to 𝑜 do
14 𝑤𝑗 ← (𝑏𝑗 ⋅ 𝜇𝑖𝑗)∕

∑𝑜
𝑗=1(𝑏𝑗 ⋅ 𝜇𝑖𝑗)

15 return 𝑐,𝒘, 𝒃

Algorithm 3: PlanRetrieval
Input: Weight path 𝕎; QoS path ℚ; Number

of DNN models 𝑛; Request strength 𝜆;
Response time constraint 𝜏

Output: Load distribution plan  ;
Microservice instance lunch count 

1 𝒑 ← 𝑂1×𝑛, 𝑗 ← 1, 𝑘 ← 𝜙
2 for 𝑖 ← 𝑛 to 1 do
3 𝑝𝑖 ← 𝕎[𝑖, 𝑗, 𝑘]
4 𝑘 ← ℚ[𝑖, 𝑗, 𝑘]
5 𝑗 ← 𝑗 − 𝑝𝑖
6 for 𝑖 ← 1 to 𝑛 do
7 𝑐,𝒘, 𝒃 ← OptSubPlan(𝑖, 𝑝𝑖 ⋅ 𝜆, 𝜏)
8 [𝑖, ∶] ← 𝒘 ⋅ 𝑝𝑖
9 [𝑖, ∶] ← 𝒃 // [𝑖, ∶] and [𝑖, ∶] are

the 𝑖-th row of matrix  and 
10 return  ,

Algorithm 1 shows the process of the prop
TDDP algorithm, it can be seen that it starts wit
tializing a lookup table 𝕄 for the recursion of th
namic programming, a weight distribution path
𝕎, and a QoS constraint path table ℚ with emp
(as shown in line 1). Then, it steps to the dyn
programming recursion procedure (as shown in
3). After that, it gets the cost of optimal orch
tion plan 𝐶 and begins to fetch the details of the
mal plan (i.e., load distribution plan  and ins
u et al.: Preprint submitted to Elsevier Page 7 of 17
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n ) by revisiting the search path 𝕎 and ℚ
in line 4). And finally, it returns the optimal
ion plan and its deployment cost (as shown

ive equation is the key component of design-
amic programming method[9], and that of
sed TDDP method can be described as:

𝑤,𝜙) = min
0≤𝑤𝑖≤1

{
𝑓𝑖(𝑤𝑖, 𝜙𝑖) +

𝐹𝑖−1(𝑤 −𝑤𝑖, 𝜙 −𝑤𝑖 ⋅ 𝑞𝑖)
}
, 𝑖 > 1

(𝑤,𝜙1) = 𝑓1(𝑤,𝜙1)

(19)
𝑤) denotes the deployment cost of allocating
rtion of 𝑤 load to the microservice instances
oy the first 𝑖 DNN models and 𝑓𝑖(𝑤𝑖) denotes
f allocating the proportion of 𝑤𝑖 load to the
that employ the 𝑖-th DNN model. The recur-
ss is shown as function DP in algorithm 1
in lines 6-28), and 𝑓𝑖(𝑤𝑖) is implemented by
ptSubPlan as shown in Algorithm 2.
resented in the recursive equation (19), the
ptSubPlan takes the target DNN model type
llocated request load as input, it first calcu-
maximum load of different container types
ear within the constraint of response time
luate the cost-performance of different con-
es (as shown in lines 2-4 in Algorithm 2).
rts the maximum load vector 𝒈 and the cost-
ce vector 𝒉 of different container types ac-
the descending order of 𝒉 (as shown in lines
r that, it begins to pick instances with the
st-performance in turn to fulfill the allocated
ad 𝜆𝑖 (as shown in lines 7-12). And finally,
istributes the load 𝜆𝑖 to a different type (i.e.,
type) of instances according to their actual
speed (as shown in lines 13-14).
n obtain the deployment cost of the optimal
-Model orchestration plan after the recur-
namic programming (as shown in line 3 in
1). However, to get the detailed plan (i.e.,
, we need to revisit the decision path of the
lution. A backtracking-based orchestration
val method is shown in Algorithm 3.
e PlanRetrieval procedure (i.e., Algorithm 2),
complexity of initializing vector 𝑏,𝑤, 𝑔, ℎ is
own in line 1), where 𝑜 is the count of avail-
iner types. The time complexity of evaluat-
st-performance of different container types is
(as shown in line 2∼4). The time complexity
ging the index of ℎ, 𝑔 according to the de-
rder of ℎ is 𝑂(𝑜 log 𝑜) (as shown in line 5∼6).
e time complexity of fulfilling the allocated
iding the load distributed to different types
es are both 𝑂(𝑜). Therefore, the total time

For the PlanRetrieval procedure (i.e., Algorith
the time complexity of initializing vector 𝑝 is 𝑂(
shown in line 1). The time complexity of revi
the decision path to get the load distribution am
different DNN models is 𝑂(𝑛) (as shown in lines
where 𝑛 is the count of candidate DNN models f
edge AI microservice. Finally, the time complex
building the orchestration plan in a backtracking
is 𝑂(𝑛𝑜 log 𝑜). Therefore, the total time complex
the PlanRetrieval procedure is 𝑂(𝑛𝑜 log 𝑜).

As shown in Algorithm 1, the time comp
of initializing searching path table 𝕄, 𝕎, and
𝑂(𝑛 ⋅𝑚 ⋅ (1∕𝑔)), where 𝑛 is the count of candidate
models for a certain edge AI microservice, 𝑚 th
cretized QoS value, and 𝑔 the granularity of load
cation (set to 1% in this paper according to the s
cloud gateway configuration). Due to 1∕𝑔 equal
in this paper, which is a constant and thus the in
ization time complexity can be represented as 𝑂
According to the recursive equation defined in
(19), the time complexity of the proposed dynami
gramming procedure is 𝑂(𝑛(1∕𝑔)𝑜 log 𝑜), which c
represented as𝑂(𝑛𝑜 log 𝑜). Finally, due to the time
plexity of PlanRetrieval procedure is 𝑂(𝑛𝑜 log 𝑜),
fore the total time complexity of the proposed TD
gorithm is𝑂(𝑛𝑚+𝑛𝑜 log 𝑜). In real-world productio
vironments, the candidate DNN models count 𝑛 i
ally less than 50; the QoS metrics (i.e., precision
accuracy) are usually correct to two decimal p
which means 𝑚 less than 104; and the available
tainer types 𝑜 are usually less than 20 (Amazon E
Container Service provides 5 kinds of configurat
Therefore, the time complexity of the TDDP algo
would not become the bottleneck of the propose
proach, the follow-up experiments based on real-w
applications also show that it is capable of makin
chestration decisions at the milliseconds level.

4.2. Three Level Load Balance-based
Algorithm for P2

For the robust multiple-edge AI microservic
stance placement problem, we aim to achieve a
level-load-balance (i.e., load balance among
servers, load balance among AI microservices,
load balance among different DNNmodels for a ce
microservice) to reduce the impact on user-perc
QoS resulted by the edge servers’ failures or edg
work’s disconnection.

As shown in Algorithm 4, the proposed TLLB
ods first calculate the resource proportion of
edge server n 𝐸 (as shown in lines 2-3), this is
timate the targets load of edge servers to guid
follow-up placement. Then, it begins to perform
placement step for every orchestration plan tha
been submitted (as shown in lines 4-25).

In the placement procedure for a certain plan
an edge AI microservice), it first calculates the op
y of the OptSubPlan procedure is 𝑂(𝑜 log 𝑜);

u et al.: Preprint submitted to Elsevier Page 8 of 17
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m 4: TLLB for P2
Submitted orchestration plans 𝑷 ; 𝐼ℎ the
set of microservice instances of plan 𝑃ℎ
;Set of edge servers 𝐸
t: Placement plan 
𝑂1×|𝐸|,  ← 𝑂|𝐼|×|𝐸|, 𝑑 ← 0

∈ 𝐸 do
← get the resource proportion of server
in 𝐸

1 to |𝑃 | do
← calculate the total load of instances
𝑃ℎ
← calculate load ratios of the instances
ith different DNN models in 𝑃ℎ
← sort 𝐼ℎ in a descending order
cording to instances’ required resources
each 𝑒𝑘 ∈ 𝐸 do
𝑡𝑘 ← 𝐿ℎ ⋅ 𝑧𝑘
ile |𝐼ℎ| ≠ 0 do
𝑟 ← get the resource required by 𝑠1ℎ
foreach 𝑒𝑘 ∈ 𝐸 do

𝑠𝑘 ← 𝑡𝑘 − 𝑟

𝐶 ← find all candidate edge servers in
𝐸 with the same score: max(𝒔)
foreach 𝑒𝑘 ∈ 𝐶 do

if no instance with the same DNN
model of 𝑠1ℎ that has been placed to
𝑒𝑘 then

𝑑 ← 𝑘
break

if 𝑑 = 0 then
foreach 𝑒𝑘 in 𝐶 do

𝑠𝑘 ← calculate the score of 𝑒𝑘
according to E.q. (20)

𝑑 ← argmin
1≤𝑘≤|𝐶|

𝑠𝑘

𝑡𝑘 ← 𝑡𝑘 − 𝑟
(𝑠1ℎ, 𝑑) ← 1
𝐼ℎ ← remove 𝑠1ℎ from 𝐼ℎ

ifferent edge servers for the current microser-
hieve the first two load balances (as shown
-9). Then, it begins the loop of placing the
ith the highest required resource, i.e., 𝑠1ℎ,its most suitable server. To find the target
s for every microservice instance, it first cal-
e distance of an edge server’s load after place-
s optimal load calculated in the previous step
in lines 11-13). The proposed TLLB method
lace the current instance to the edge serve
hortest such distance, the reason for doing

lower required resources, and this strategy hel
fill up the target loads of edge servers more smo
Note that, there could be multiple edge servers
have the same distance, and we use 𝐶 to denote
Under this circumstance, we consider the load ba
among instances that employ different DNN mod
finalize the target edge server. It can be seen t
first tries to find an edge server without being p
any instances with the same DNN model (as show
lines 15-18). If there is no edge server qualified,
will evaluate a score for every server in 𝐶 and
𝑠1ℎ to the server with a minimum score (as show
19-25). Let 𝑹ℎ and 𝜸𝑘 denote the load ratios o
instances with different DNN models in plan 𝑃ℎ
edge server 𝑒𝑘 respectively, to achieve the third
of load balance, we define the score of server in
the cosine distance between 𝑹ℎ and 𝜸𝑘:

𝑠𝑘 =
𝑹ℎ ⋅ 𝜸𝑘

‖𝑹ℎ‖‖𝜸𝑘‖ .

It can be seen that TLLB prefers the edge server
better load balances on instances with different
models. That is because different DNN models
different QoS, and the fluctuation of user perc
QoS incurred by server crashes or network failure
be alleviated by performing third load balance.

For a submitted orchestration plan 𝑃ℎ, the
complexity of calculating the total load, load r
with different DNN models, and sorting microse
instance set 𝐼ℎ is 𝑂(|𝐼ℎ| log |𝐼ℎ|) (as shown in line
in Algorithm 4). The time complexity of findin
candidate edge servers 𝐶 in 𝐸 for a certain ins
is 𝑂(|𝐸| log |𝐸|) (as shown in lines 11∼14). The
complexity of placing a microservice instance t
most suitable candidate is 𝑂(|𝐶|), where |𝐶| ≤
Therefore, the total time complexity of generatin
microservice instance placement solution for a su
ted orchestration plan is 𝑂(|𝐼ℎ| ⋅ (log |𝐼ℎ|+ |𝐸| log

5. Experiments and Analysis
To verify the effectiveness and efficiency o

proposed solution, a series experiments based on
world edge server configurations and AI microser
performances are conducted. In this section, we
introduce the settings of our experiments, then
the results of comparisons between ours and the
of-the-art ones.

5.1. Experiments Settings
We consider 4 kinds of real-world edge serve

edge infrastructure providers to build their edg
source pool, Table 1 detail their configurations
count. Edge AI application vendors acquire ed
sources in a container way and we consider 5
of container types as Amazon AWS Fargate did
cause the later instances to be placed have ble 2 shows their configurations and prices. There are

u et al.: Preprint submitted to Elsevier Page 9 of 17
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nference rate and QoS of different DNN models on containers with different configurations.

s configurations

e Cores RAM Storage Network Count

iShan 16 32 GB 2TB 4 × 10 GE 10

G4 MEC 32 64 GB 2TB 2 × 10 GE 4
Edge 32 96 GB 8TB 2 × 10 GE 4

inkServer 48 128
GB 12TB 2 × 10 GE 2

onfigurations and prices

vCPU RAM Per vCPU per
hour (USD)

Per GB per
hour (USD)

0.25 0.5 GB 0.0032 0.0004
0.5 1 GB 0.0064 0.0007
1 2 GB 0.0129 0.0014
2 4 GB 0.0258 0.0028
4 8 GB 0.0515 0.0057

f edge AI microservices (i.e., image classifi-
object detection 𝑆2, and action recognition
e consider 6 candidate DNN models for each
pecifically, ResNet 101, MnasNet, DenseNet
ileNet V2, ShuffleNet V2, and AlexNet mod-
ailable for image classification applications;
, SpineNet-190, Faster R-CNN, Fast R-CNN,
nd YOLOv3 for object detection; MGGUNet,
, R-C3D, TURN-TAP, and MSCNN for action
n. As shown in Figure 6, we collect the QoS
nse time and accuracy) of different edge AI
ices that employ different DNN models on
kinds of containers to conduct our experi-

oposed approaches and all baselines are im-
with MATLAB R2021b and all experiments
cted on a PC with Intel Core i5 (Quad-Core,
8Gb RAM, and 512Gb storage. All cases are
50 times and the mean performances are

5.2. Deployment Cost Evaluation
For the multiple DNN model orchestration

lem of edge AI microservice, we consider the follo
methods as baselines:

− DFS[28]: finding the optimal orchestration
by performing a Depth-First-Search (DFS);

− BGA+BAR[25]: a meta-heuristic algo
that first employ the binary genetic algorith
find the preliminary solution, then a bottle
analysis-based solution is performed to fin
the orchestration plan;

− SG[15]: a simple greedy heuristic that
chooses one DNN model that satisfies the
constraints and always selects the container
with the lowest price;

− BG[10]: a bidirectional greedy heuristic th
ways chooses the DNN model with the hi
QoS inference time ratio and cheapest cont
type that fulfills the QoS constraints at diff
stages.

− GrandSLAm[13]: a heuristic microservic
ecution framework that only consider a s
container type (i.e., M size in our experim
it firsts pushes candidate microservice inst
into an ascending priority queue in terms o
mated slack time, then increases the batch c
of instances until QoS constraints are about
unsatisfied.

The QoS constraints and request load of 3 edge A
croservices in our experiment environments are sh
in Table 3.
Results: Figure 7 compares the deployment co
curred by the proposed TDDP approach and its
under different load situations and QoS constr
and Figure 8 shows the decision time (i.e., CPU ela
time) of them. It can be seen that the prop
TDDP approach achieves the lowest deployment
three microservice cases, more specifically, the de
ment cost of TDDP are 1.8%, 1.1%, and 0.67% l

than DFS in three cases on average; 67.7%, 68.66%,
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Table 3
QoS constraints and request load settings

I Microservice QPS Response time constraint (s) QoS constraint

ge classification 50 ∼ 600 0.2 ∼ 1 65% ∼ 74% (Accuracy rate)
ect detection 50 ∼ 600 0.2 ∼ 1 34 ∼ 39 (Box AP)
ion recognition 50 ∼ 300 0.8 ∼ 1.6 22 ∼ 34 (MAP@0.5)

% lower than BG in three cases on average;
5%, and 70.99% lower than GD on average;
5.54%, and 41.20% lower than BGA+BAR
e; 62.73%, 56.6% and 56.63% lower than
m on average. DFS performs close to the pro-
P deployment cost but at the cost of a higher
ime. We can learn from the Figure 8 that the
approach gets the lowest decision time, the
TDDP costs slightly higher time than them
lower time than DFS and BGA+BAR meth-
specifically, the decision time of TDDP are
2.16%, and 73.25% lower than DFS in three
verage; 94.04%, 80.88%, and 83.4% lower
+BAR on average.
The reason why the proposed TDDP gets the
ployment cost lies in that it investigates ev-
le multi-DNN model orchestration plan as
But different from the exhaustive search
e dynamic programming and pruning fea-
he proposed TDDP can significantly reduce
scope and thus shorten the decision time.
outperforms the BG because it leverages the
s of different DNN models and employs mul-
models to fulfill the QoS requirement of a
e AI microservices. Through the GD heuris-
e lowest decision time, its simple greedy de-
strategy limits its capability of finding high-
ployment plans. Same as a heuristic method,
BAR achieves a better performance than GD,
its iterative optimization suffers from high
lexity and results in the highest CPU elapsed
reason why TDDP outperforms the Grand-
in that TDDP considers various container
different configurations to build orchestra-

, which helps to smoothly fulfill the various
mands. While the GrandSLAm only consid-
pe of container, which may lead to unneces-
rce waste and finally result in high deploy-
s.

cts Analysis of Resources Failure
experiments, we also evaluate the effect of
icroservice instance placement approaches

ountering edge resource failures. As related
, 3] did, we randomly choose a certain pro-
f edge nodes and disable them to simulate
urce failures. For the robust edge AI mi-
placement problem, we consider the follow-

ing real-world container scheduling policies as
lines:

− LRP[5]: Least-Requested-Priority place
policy that always schedules pods (i.e., ne
croservice instances) to edge nodes with the
est resource utilization rate;

− LRP-E[5]: similar to LRP except that the
are preferentially placed to the edge nodes
the lowest load;

− Spread[20]: it prefers placing newly arrivi
stances to the edge node with the lowest nu
of hosted containers;

− SSP[19]: Selector-Spread-Priority place
policy that aims at distributing the instanc
the same microservice to different edge no

− Random: a random placement policy tha
domly selects edge nodes to host microse
instances.

where LPR, LPR-E, and SSP are candidate pod p
ment policies of Kubernetes, and Spread is the de
container placement policy of Swarm. We contro
proportion (from 10% to 50%) of edge resource
encounter failures and observe the impact of thes
ures on the QoS of deployed edge AI microservic
Results: Figure 9 shows the change in response
and accuracy rates of the deployed 3 edge AI mic
vices faced with different scales of failures. As i
previous experiment, the deployed 3 application
image classification application (IC APP); Obje
tection application (OD APP); and Action recogn
application (AR APP); It can be seen that wit
increase of unavailable edge resources, the resp
time of all three microservices shows an incre
trend, and the response time fluctuation of the
posed TLLB placement strategy is much lower
other policies. Besides, the fluctuation of the
racy rates under the TLLB placement strategy is
much lower than other policies. Table 4 shows th
merical analysis of them, and it can be seen tha
proposed TLLB placement strategy achieves the lo
load standard deviations on both the edge server
and application view, which indicates less and lim
QoS variation when an encounter with edge reso

failures.
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(a) Image classification microservice.
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(b) Object detection microservice.
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(c) Action recognition microservice.
Figure 7: Comparison of deployment cost.

The proposed TLLB placement approach
ms its peers because it not only considers the
nce between edge servers but also balances
mong different applications. In this way, the
application share the risk of edge resources
d the potential cascade crashes are avoided
ve a dependent relationship. Besides, it also
the load balance among different DNN mod-
certain microservice, which further guaran-
ationarity of deployed edge AI microservices,
mizing the QoS fluctuation as far as possi-
encountering edge resource failures. To sum
ree levels load balance strategy of the pro-
B placement approach guarantees the fair-
k and load in the edge server, deployed ap-
microservice), and DNN model levels, which
iminate the impact of edge resources failures
ossible (as shown in the lowest response time

in Table 4).

6. Related Works
In recent years, the philosophy of cloud-n

has been widely accepted by mainstream soft
providers and become a guideline to fully em
the cloud ecosystem in the post-cloud era. Th
idea of building an application that meets the c
native requirement is to employ the microservi
chitecture to improve flexibility and maintaina
and fully leverage the cloud infrastructure to ac
elastic scaling, dynamic scheduling, and high
source utilization [16]. In this section, we fir
view the related studies on AI microservices and t
cent progress of microservices governance at the
Then, we analyze the limitation of current st
and discuss the meaning/necessity of investigatin

cost-effective and robust deployment of AI microser-
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(a) Image classification microservice.
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(c) Action recognition microservice.
Figure 8: Comparison of execution time.

Table 4
Numerical analysis of the edge resource failure experiment

hm Std of Edge servers’
load Std of App1’s load Std of App2 load’s Std of App3’s load Average respo

time

0.0078 0.0066 0.0067 0.0031 16.3313
0.3778 0.2660 0.4245 0.3728 18.3556
0.4326 0.2660 0.4084 0.3794 20.8695

d 0.5134 0.1751 0.1625 0.2056 23.0064
0.5511 0.1751 0.1746 0.2171 23.6266

m 0.4690 0.1712 0.1921 0.2191 20.1012

edge environment.

icroservices
he increasing popularity of AI-based appli-
ong end-users, more and more application
begin to deliver AI services in a microser-

vice manner, and the management of AI microse
thus becomes a hot issue. For example, Kann
al. [13] proposed an SLA-guaranteed microservi
ecution framework for AI and ML applications, s
for GrandSLAm. They first analyze the differenc
tween classic and AI/ML-based microservices in t
u et al.: Preprint submitted to Elsevier Page 13 of 17
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Figure 9: QoS variation after encounter edge resource failures.

SLA metrics. Then, they train a regression-
del to estimate the completion time of the
quest. And finally, they derive the individ-
SLAs for each microservice/stage based on
ted response time and developed a dynamic
lgorithm to schedule requests while meeting
onstraints. To achieve elastic and scalable
unction Virtualization (NFC), Nekovee et al.
osed an AI-enabled microservice architecture
zed its potential features for live streaming,
ty, and enterprise VPN. Chang et al. [2] de-
composable and self-evolving microservices-
roach to transform AI-accelerated applica-
secure, scalable, and composable enterprise
ices. And Rausch et al. [27] investigated
ility of realizing a seamless end-to-end intel-
e system by employing the AI-empowered
sical fabric. For the secure and reliable de-
of AI microservices, Muthusamy et al. [21]
AI methods to understand the relation be-
models and business Key Performance Indi-
Is), and proposed a data-driven approach
the potential deployment risks. While Zhao
] targeted the AI model sharing scenarios
sed a microservices-based ML model pack-
ring platform (shorts for Acumos).
roservices Governance at Edge
hile, to smoothly deliver QoS-guaranteed
t the edge and improve the utilization of
edge computing resources, the smart gov-
f microservices at the edge has attracted

provision QoS-guaranteed services and achieve
adaptive system governance when faced with ma
requests and personalized demands, He et al. [11
posed EPF4M (a programming framework) and E
(an infrastructure for self-adaptive microservic
tems) to build a cloud–edge environment-base
croservice architecture. In their approach, se
systems are allowed to redeploy their microser
with the changes of the fluctuant QoS requirem
and they proposed a two-phase strategy to min
the redeployment overhead. In order to achie
user-mobility-aware microservice redeployment,
also proposed three heuristics [12] and evalu
their performances by integrating them into K
netes. Samanta et al. [29] considered the net
delay and network price as microservice sched
targets and proposed a Lagrangian multiplier-b
dynamic microservice scheduling framework.
larly, Wang et al. [38] took the mobility of end-
into consideration and considered the service
and cost as scheduling targets. They first propo
dynamic programming-based offline microservic
ordination algorithm to yield global optimal s
ules. However, this offline algorithm heavily reli
prior knowledge and suffers from low efficiency.
they formulated the microservice scheduling pro
to a Markov decision process (MDP) and prop
a reinforcement learning-based online solution.
et al. [18] proposed a fuzzy-control-based algo
(FSODM) to autonomously scale the deployed edg
croservice in the runtime. Zhao et al. [45] in
gated the redundant deployment of microservic
ttractions. For example, to continuously

u et al.: Preprint submitted to Elsevier Page 14 of 17
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d edge environments. They proposed a Ge-
rithm-based algorithm for the edge server se-
d a Monte Carlo simulation-based approach
dundant placement framework. However,
ion only supports edge microservice applica-
a sequential combinatorial structure. Filip
proposed a novel microservice scheduling
performing a particular mathematical formu-
eterogeneous cloud-edge environments. Vil-
[35] proposed user-location-aware edge mi-
orchestration deployment approach by in-
rver geographical constraints.
ful investigation into the aforementioned
ows that they are still limited in three ways:
eduling granularity of most existing AI mi-
governance solutions still remains at the ser-
seldom touching the DNNmodel level. How-
amically changing the orchestration plan of
NN models to fulfill the QoS requirement of

services could further reduce the deployment
Ps; 2) most current microservice placement
s only consider the load balance and deploy-
ity on the edge nodes level or application
wever, when we consider the mixed orches-
different DNN models to implement a mi-
, applying these traditional placement strate-
fail to fulfill the QoS constraints; 3) most
sting studies mainly focus on one of the mi-
orchestration or placement problems on the
ronments only. However, in real-world ap-
scenarios, we usually need to integrate both
nto an edge AI microservice governance so-
d composing orchestration and placement
with different design goals and philosophies
t in low system efficiency and additional op-
overhead. Thus, the edge AI microservice or-
n and placement problems need to be solved
nd the corresponding strategies should sup-
ach other to reduce internal friction.
ore, the coherent and collaborative orches-
d placement algorithms, which consider the
hestration of different DNN models to imple-
dge AI microservice, are in high demand to
cost-effective and robust deployment of AI
ice in the MEC environments.

lusion and Further studies
tudy proposed a novel cost-effective multi-
odel mixed orchestration problems for edge
ervice deployment for mobile application
and its corresponding robust microservice
placement problem for edge infrastructure
. To solve the first problem, we developed
mension-dynamic-programming-based algo-
t can yield the optimal deployment plan of
icroservice when considering multiple DNN

placement problem, we proposed a three-leve
ance method that is capable of balancing the loa
tween servers, applications, and DNNmodels. Th
posed algorithms can easily be integrated into cu
popular microservice governance and edge reso
management platforms (e.g., Spring Cloud, D
KubeEdge, etc). The experiment based on real-w
edge AI applications and DNN models has de
strated that the proposed orchestration and place
methods can significantly reduce the deploymen
of edge AI service and the performance degrad
when encountering failures compared with tradit
approaches.

For our further studies, we will address the fo
ing concerns: 1) some temporal data mining me
(e.g., LSTNet and TPA-LSTM) can be employed t
dict end-users future request strength, and base
this information, the corresponding runtime ed
services automatic scaling approaches can be d
oped to save more deployment costs for mobile
cation providers; 2) we only consider public ed
source providers in this study, for our future wo
mixed edge resource pool constructed by private
cloud and public edge cloud will be well investi
to achieve a more cost-effective edge AI service g
nance; 3) more Quality-of-Experience (QoE) metr
edge AI microservices such as service satisfaction
ging time, and reliability should be well investi
to build a user-experience-centric edge AI servic
vision model.
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Highlights

Edge computing is a promising paradigm to accelerate novel mobile 

applications

Edge computing paradigm is still restricted by limited resources and error-

prone network

Edge resources are usually provisioned in a Container-as-a-Service way

Multiple DNN models with mixed deployment help to reduce the operating 

costs of edge application providers

Considering multilevel load balance guarantees the robust of deployed edge 

AI microservices



Journal Pre-proof

Author contributions 

 

Use th  

five t  

analys

For e  

autho  

specif  

contri  

contri  

‘Perfo

If an  

please  

contri

 

Manu  

Envir

 

Auth

☒ 

☒ 

☒ 

☒ 

☒ 

☐ 

 

 

Author Names and their Contribution
Jo
ur

na
l P

re
-p

ro
of

is form to specify the contribution of each author of your manuscript. A distinction is made between

ypes of contributions: Conceived and designed the analysis; Collected the data; Contributed data or

is tools; Performed the analysis; Wrote the paper. 

ach author of your manuscript, please indicate the types of contributions the author has made. An

r may have made more than one type of contribution. Optionally, for each contribution type, you may

y the contribution of an author in more detail by providing a one-sentence statement in which the

bution is summarized. In the case of an author who contributed to performing the analysis, the author’s

bution for instance could be specified in more detail as ‘Performed the computer simulations’,

rmed the statistical analysis’, or ‘Performed the text mining analysis’. 

author has made a contribution that is not covered by the five pre-defined contribution types, then

 choose ‘Other contribution’ and provide a one-sentence statement summarizing the author’s

bution. 

script title: Towards Cost-Effective and Robust AI Microservice Deployment in Edge Computing

onments 

or 1: Chunrong Wu 

Conceived and designed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Collected the data 
Specify contribution in more detail (optional; no more than one sentence) 

Contributed data or analysis tools 
Specify contribution in more detail (optional; no more than one sentence) 

Performed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Wrote the paper 
Specify contribution in more detail (optional; no more than one sentence) 

Other contribution 
Specify contribution in more detail (required; no more than one sentence) 

 



Journal Pre-proof
Author 2: Qinglan Peng 

☐ 

☒ 

☒ 

☒ 

☐ 

☐ 

 

Auth

☒ 

☐ 

☐ 

☒ 

☐ 

☐ 

 

 

Jo
ur

na
l P

re
-p

ro
of

Conceived and designed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Collected the data 
Specify contribution in more detail (optional; no more than one sentence) 

Contributed data or analysis tools 
Specify contribution in more detail (optional; no more than one sentence) 

Performed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Wrote the paper 
Specify contribution in more detail (optional; no more than one sentence) 

Other contribution 
Specify contribution in more detail (required; no more than one sentence) 

or 3: Yunni Xia 

Conceived and designed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Collected the data 
Specify contribution in more detail (optional; no more than one sentence) 

Contributed data or analysis tools 
Specify contribution in more detail (optional; no more than one sentence) 

Performed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Wrote the paper 
Specify contribution in more detail (optional; no more than one sentence) 

Other contribution 
Specify contribution in more detail (required; no more than one sentence) 

 



Journal Pre-proof
Author 4: Yong Jin 

☐ 

☐ 

☒ 

☒ 

☐ 

☐ 

 

Auth

☐ 

☒ 

☐ 

☐ 

☐ 

☐ 

 

 

Jo
ur

na
l P

re
-p

ro
of

Conceived and designed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Collected the data 
Specify contribution in more detail (optional; no more than one sentence) 

Contributed data or analysis tools 
Specify contribution in more detail (optional; no more than one sentence) 

Performed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Wrote the paper 
Specify contribution in more detail (optional; no more than one sentence) 

Other contribution 
Specify contribution in more detail (required; no more than one sentence) 

or 5: Zhentao Hu 

Conceived and designed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Collected the data 
Specify contribution in more detail (optional; no more than one sentence) 

Contributed data or analysis tools 
Specify contribution in more detail (optional; no more than one sentence) 

Performed the analysis 
Specify contribution in more detail (optional; no more than one sentence) 

Wrote the paper 
Specify contribution in more detail (optional; no more than one sentence) 

Other contribution 
Specify contribution in more detail (required; no more than one sentence) 

 



Journal Pre-proof

Chunrong  Wu,  received  the  B.S.  degree  in  software  engineering  from  Xinjiang

University, Xinjiang, China, in 2016, the M.Eng. degree in software engineering from
Jo
ur

na
l P

re
-p

ro
of

Zhejiang  Univesity,  Zhejiang,  China,  in  2018,  and  the  Ph.D.  degree  in  software

engineering from Chongqing University, Chongqing, China, in 2022. She is currently a

Lecturer with the School of Artificial Intelligence, Henan University. She has authored

or coauthored more than 10 research publications. Her research interests are in edge

computing, service computing, and data mining.

Qinglan  Peng,  received  the  B.S.  degree  in  software  engineering  from Xinjiang

University,  Xinjiang,  China,  in  2016,  the M.Eng.  degree in  software engineering

from Zhejiang Univesity, Zhejiang, China, in 2018, and the Ph.D. degree in software

engineering from Chongqing University, Chongqing, China, in 2022. He is currently

a  Lecturer  with  the  School  of  Artificial  Intelligence,  Henan  University.  He  has

authored or coauthored more than 20 research publications. His research interests are

in edge computing, service computing, and cloud computing. 

Yunni  Xia,  received  the  B.S.  degree  in  computer  science  from  Chongqing

University, Chongqing, China, in 2003, and the Ph.D. degree in computer science

from Peking University, Beijing, China, in 2008. He is currently a Professor with the

College of Computer Science, Chongqing University. He has authored or coauthored

more than 100 research publications. His research interests are in service computing,

cloud  computing,  edge  computing,  intelligent  data  processing,  and  software

dependability.

Yong  Jin,  received  the  Ph.D.  degree  in  computer  science  from  Northwestern

Polytechnical  University,  Xian,  China.  He  is  currently  a  Professor  the  School  of

Artificial  Intelligence,  Henan  University.  His  research  interests  are  in  distributed

computation and wireless sensor network.

Zhentao  Hu,  received  the  Ph.D.  degree  in  computer  science  from  Northwestern

Polytechnical University, Xian, China. He is currently a Professor the School of Artificial

Intelligence,  Henan  University.  His  research  interests  are  in  Intelligent  Information

Processing, Modeling and estimation of complex systems, and moving targets tracking.



Journal Pre-proof

C

d

W

Q

t

Y

a

Y

a

Z

Jo
ur

na
l P

re
-p

ro
of

Author Credit Statement

hunrong Wu: Conceived and designed the analysis; Collected the

ata;  Contributed  data  or  analysis  tools;  Performed  the  analysis;

rote the paper. 

inglan  Peng:  Collected  the  data;  Contributed  data  or  analysis

ools; Performed the analysis; Visualization; Methodology. 

unni  Xia:  Conceived and designed the  analysis;  Performed the

nalysis. 

ong  Jin: Contributed  data  or  analysis  tools;  Performed  the

nalysis.

hentao Hu: Collected the data; Supervision.



Journal Pre-proof

Decla
 

 Th ps ☒
that 
 

 Th red ☐
as po

 
 
 

Jo
ur

na
l P

re
-p

ro
of

ratio if ioterettt

e authors declare that they have no known competng fnancial interests or personal relatonshi
could have appeared to infuence the work reported in this paper.

e authors declare the following fnancial interests/personal relatonships which may be conside
tental competng interests:


