Journal Pre-proof o

. . . . FIGICIS!
Towards cost-effective and robust AI microservice deployment in edge D
computing environments

Chunrong Wu, Qinglan Peng, Yunni Xia, Yong Jin, Zhentao Hu ==

PII: S0167-739X(22)00331-4

DOI: https://doi.org/10.1016/j.future.2022.10.015
Reference: FUTURE 6622

To appear in: Future Generation Computer Systems

Received date: 8 July 2022
Revised date: 2 September 2022
Accepted date: 17 October 2022

Please cite this article as: C. Wu, Q. Peng, Y. Xia et al., Towards cost-effective and robust Al
microservice deployment in edge computing environments, Future Generation Computer Systems
(2022), doi: https://doi.org/10.1016/j.future.2022.10.015.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2022.10.015
https://doi.org/10.1016/j.future.2022.10.015

Towards Cost-Effective and Robust Al Microservice Deployment
in Edge Computing Environments

Chunrong Wu?, Qinglan Peng®*, Yunni Xia?, Yong Jin® and Zhentao Hu®

4School of Artificial Intelligence, Henan University, Zhengzhou, 450046, China.
bSoftware Theory and Technology Chongqing Key Lab, Chongqing University, Chongqing, China

ARTICLE INFO

Keywords:

Multi-access Edge Computing

Al Edge Service

Service Deployment

Service Placement

Microservice Mixed Orchestration
Cost-effective Scheduling

ABSTRACT

As a newly emerged promising computing paradigm, Multi-access Edge Computing (MEC) is
capable of energizing massive Internet-of-Things (IoT) devices around us and novel mobile
applications, especially the computing-intensive and latency-sensitive ones. Meanwhile,
featured by the rapid development of cloud-native technologies in recent years, deliver-
ing Artificial-Intelligence (AI) capabilities in a microservice way in the MEC environments
comes true nowadays. However, currently MEC systems are still restricted by the limited
computing resources and highly dynamic network topology, which leads to high service
deployment/maintenance cost. Therefore, how to cost-effectively and robustly deploy edge
Al microservices in failure-prone MEC environments has become a hot issue. In this study,
we consider an edge Al microservice that can be implemented by composing multiple Deep
Neural Networks (DNN) models, in this way, features of different DNN models are aggre-
gated and the deployment cost can be further reduced while fulfilling the Quality-of-Service
(QoS) constraint. We propose a Three-Dimension-Dynamic-Programming-based algorithm
(TDDP) to yield cost-effective multi-DNN orchestration and load allocation plans. For the
robust deployment of the yield orchestration plan, we also develop a robust microservice
instance placement algorithm (TLLB) by considering the three levels of load balance includ-
ing applications, servers, and DNN models. Experiments based on real-world edge envi-
ronments have demonstrated that the proposed orchestration and placement methods can
achieve lower deployment costs and less QoS loss when faced with edge node failures than
traditional approaches.

List of Abbreviations

DNN Deep Neural Network

EAP Edge Application Provider

EIP Edge Infrastructure Provider

ESB Enterprise Service Bus

IoT Internet of things

MEC Multi-access Edge Computing

SOA Service-Oriented Architecture

QoS Quality of Service

QPS Query Count Per Second

TDDP Proposed microservice orchestration algorithm
TLLB Proposed microservice placement algorithm

1. Introduction

system into a massive lightweight, single purpose,
and re-deployable applications, which enhances the
scalability and reliability of the system and real-
ize DevOps[40]. Meanwhile, the significant break-
throughs in Al (especially in deep neural networks and
its applications) techniques produce numerous novel
applications (e.g., augmented reality, metaverse[36],
and intelligent transportation systems[47, 48]), which
greatly changed daily lives. The advanced Al and mi-
croservices techniques promote the prosperity of mo-
bile/Internet of things (IoT) devices and applications,
according to the prediction of Cisco, there will be 29.3
billing active mobile and IoT devices connected, and
more than 75% web actions will happen on these end-
devices[4]. However, due to the restriction of comput-

Recent years have witnessed the prosperity of
cloud-native techniques such as Docker, Swarm, and
Spring Native, which promoted the emergence of
microservices architecture [6, 31]. Different from
traditional Service-Oriented Architecture (SOA) re-
lays Enterprise service bus (ESB), it splits the whole

Chunrong Wu, Qinglan Peng, Yong jin and Zhentao Hu
are with the School of Artificial Intelligence, Henan Univer-
sity, Zhengzhou, 450046, China. Yunni Xia is with the
School of Computers, Chongqing University, Chongqing 400044,
China. The corresponding author of this work is Qinglan Peng
(qinglan.peng@hotmail.com).

ORCID(s): 0000-0002-2691-093X (C. Wu);
0000-0002-8908-5201 (Q. Peng); 0000-0001-9024-732X (Y. Xia)

ing capabilities and battery life, applications on mobile
and IoT devices usually choose to invoke Al services
deployed on the remote cloud to fulfill their functional
requirements.

However, with mobile application providers and
end-users increasing demands on high responsiveness
and smooth real-time experience, the traditional cloud
computing paradigm can not fulfill the low end-to-end
service invoking delay requirement[26]. With the en-
hancement of advanced 5G communication technolo-
gies, Multi-access Edge Computing (MEC) emerged to
tackle this problem. The MEC paradigm aims to deploy
computing resources to the edge of networks (which
could be base stations, network sinks, or CDN nodes)

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 1 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

QoS Requirement DNN model Inference
D Aceuracy | oo mplexity

QPS: 500 M1 62% 0.24

Response time: 200ms M2 73% 1.2

Accuracy: >= 67.5% M3 78% 3.2
Single Model
500QPS 500QPS 500QPS
OR OR Yy A7
docker docker
x? x 12
N/A $ per hour 1.5% per hour 4.2% per hour

Multiple Models Composition

500QPS

M7
+ +
docker
X3 X 4
0.8% per hour 0.6$ per hour 1.4$ per hour

Figure 1: An example of Al microservices mixed deployment.

to provide pervasive computing capabilities[32]. In
this way, application providers can deploy their mo-
bile applications to the edge servers which are close
to end-users reduce latency, and end-users are capa-
ble of offloading computing-intensive tasks to nearby
edge servers in a service-invoking way to overcome the
restriction of limited hardware resources. As a promis-
ing computing paradigm in the post-cloud computing
era[50], the advantages of MEC have been widely con-
cerned and multiple cloud providers are exploring its
best practices.

Though the MEC paradigm has many advantages,
its distributed and multiple-access natures also bring
lots of challenges, e.g., the limited computing power
of edge servers and the uncertain, error-prone net-
work connectivity. For edge application providers
(EAPs), there are also problems with deploying Al mi-
croservice applications on the MEC environments[39].
For example, the Al microservices are usually imple-
mented by Deep Neural Networks (DNN) models and
there are multiple DNN models available for the same
services, different DNN models have different perfor-
mances (e.g., inference rates, computing amount, and
accuracy or precision). Employing a single DNN model
to implement an Al microservice suffer from high de-

ployment cost and may lead to a bad user experience
resulting from the preference of certain inputs. As
shown in Figure 1, composing multiple DNN models
to implement a single Al microservice and allocate
proper request loads to them helps to reduce deploy-
ment costs when fulfilling the Quality-of-Service (QoS)
requirements. And this is the cost-effective multi-DNN
Model orchestration problem that we are interested in
this study.

While for the edge infrastructure providers (EIPs),
who maintain an edge resource pool and get revenue
from providing edge computing resources to EAPs,
they could serve multi-tenant (e.g., support the deploy-
ment plans from multiple EAPSs) at the same time[42].
However, different from the centralized cloud comput-
ing data centers, the edge resources pool is constructed
by distributed edge servers with heterogeneous con-
figurations, which are prone to resource failure and
unavailable. Thus for EIPs, how to place the edge Al
microservices instances requested by multi-tenant to
proper edge nodes to reduce the impact of edge re-
source failures is the robust edge AI microservice in-
stances placement problem, which is also to be inves-
tigated in this study.

To address the aforementioned challenges, we pro-
pose two approaches (shorts for TDDP and TLLB) to
solve the cost-effective and robust edge Al microser-
vices deployment problems from the EAP and EIP per-
spectives respectively. Where the TDDP approach is
developed for EAPs, it can be integrated into microser-
vices governance frameworks such as Apache Dubbo
and Spring Boot. While the TLLB approach is designed
for EIPs, it can be integrated into edge resources gov-
ernance systems such as KubeEdge and K3S. To the
best of our knowledge, this is the first work consider-
ing multi-DNN models orchestration for the edge Al
microservice deployment problem and solving it from
both EAP’s and EIPs’ perspectives. The main contri-
butions of this work are as follows: 1) We propose
the cost-effective and robust edge Al microservice de-
ployment problem, where edge AI microservices are
allowed to be implemented by multi-DNN models, in
this way, the advantages of different DNN models are
composed to achieve cost-effectively and QoS quali-
fied edge AI microservice deployment. We present
two approaches to solve it from the perspectives of
both EAPs and EIPs; 2) For EAPs, we develop a dy-
namic programming-based algorithm (TDDP) to solve
the cost-effective multi-DNN orchestration problem. It
takes the performance metrics of different DNN mod-
els and the required QoS constraint of the edge Al mi-
croservice as inputs and employs a three-dimensional
dynamic programming mechanism to find the optimal
orchestration plan; 3) For EIPs, we develop a three-
layer-load-balance-aware algorithm to solve the robust
edge Al microservice instance placement problem. It
considers three different levels of load balance (e.g.,

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 2 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

tenant level, edge server level, and DNN model level)
to minimize the impact of edge resource failures on the
deployed microservice instances belonging to multi-
tenant as much as possible.

The remainder of this paper is organized as fol-
lows. Section II uses two motivating examples to illus-
trate the cost-effective and robust Al microservice de-
ployment problems. Section II introduces our system
model and presents the problem formulation of the
proposed problems. The solutions proposed from the
EAP and EIP perspectives respectively are described
in Section IV. Section V presents our experimental re-
sults and analysis. Section VI reviews the related stud-
ies. Section VII concludes this study and indicates our
future concerns.

2. Motivating Examples

In this section, we use two real-world examples to
make the proposed problems clearer and illustrate the
practical significance of solving them.

2.1. Scenario A

Edge Al microservice selection and composition
are the key challenges to achieving high response and
scaleable service provision[30]. For example, for an
edge application provider (EAP), suppose there is a
flower recognition business (like PictureThis or Plant-
Net APPs in google play) in its mobile application.
Considering that deploying the image classification ser-
vice in a remote cloud may lead to long response time
and heavy data transmission, with the help of a novel
edge computing paradigm and microservice architec-
ture, this EAP plan to deploy the flower recognition
function in a containerized microservice way to the
edge servers where close to the end-users to improve
the user experience.

Suppose the non-functional requirements of the
flower recognition business are defined as follows: 1)
Accuracy requirement: the average accuracy of recog-
nition result should be higher than 70%; 2) Response
time requirement: the response time per service in-
vocation should be less than 800 milliseconds; 3)
Throughput requirement: the flower recognition busi-
ness can support 200 requests per second (i.e., 200
QPS). For the image classification function to imple-
ment flower recognition business, there could be multi-
ple DNN models that can choose (e.g., AlexNet, ResNet,
DenseNet, ..., etc.), and each model has a different
QoS (e.g., recognition accuracy and inference com-
putation amount). Meanwhile, edge infrastructure
providers (EIPs) provision edge computing resources
in a Container-as-a-Service (CaaS) way, and there are
multiple container types with different configurations
available to choose from.

As shown in Figure 2, under this circumstance, as
an EAP, the proposed cost-effective multi-DNN mod-
els mixed orchestration for edge Al microservice aims

QoS Requirement

500QPS Q3

@ How to distribute the
Accuracy: >= 67.5%

load of request to
different models and

. ONNV OV OV
Ql'. Moctes AMocdes NFotes
Which models should 7 = =
be choosed? [[

Q2:
How many microservice

QPS: 500

Response time: 200ms

4

—] —]

instance on which type
of container should be 2
launched? e

docker

&

docker

roE s

eker | dockar

Figure 2: Three questions to be solved under edge Al microser-
vices orchestration scenario.

to solve: 1) how to choose suitable DNN models
with different QoS to implement the image classifica-
tion function to fulfill the accuracy requirement; 2)
how many microservice instances should be launched
on what kind of container type to minimize the de-
ployment cost while fulfilling the throughput require-
ment; 3) how to distribute the request load to the
lunched instances to fulfill the response time require-
ment. Compared with traditional edge Al deployment
approaches that only consider a single DNN model,
the proposed multi-model mixed orchestration scheme
can fully leverage the QoS features of different DNN
models, draw on each other’s strengths, and finally
reduce the deployment cost by composing them to-
gether. Besides, different DNN models may prefer dif-
ferent kinds of inputs, and implementing an edge Al
microservice with multiple DNN models can improve
the user-perceived QoS to some degree. Therefore,
solving the proposed cost-effective multi-DNN-model
mixed orchestration problem is of great practical sig-
nificance.

Operational objectives

/ 28

APP 1 APP 2 APP 3

SLA : 99.9% Availability

Cost: as low as possible

&
Where to placement? ”?

or

Q1:
How to place Al microservices

instances to heterogeneous edge
nodes to achieve load balance?

Q2:

How to achieve an application
anti-affinity-aware microservices
placement?

Edge Node 1 Edge Node 2 Edge Node 3

Available Zone 1 Available Zone 2

Figure 3: Two challenges need to be tackled in edge Al mi-
croservices placement scenario.

2.2. Scenario B

After get the orchestration plans of their edge Al mi-
croservices, EAPs begins to submit the microservice in-
stance lunch requests (usually described by ymal files
that specify the container type, application image, and
library dependencies) to EIPs to finalize the microser-

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 3 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

vice deployment.

Generally, an EIP usually manages an edge re-
source network that contains a bunch of edge nodes de-
ployed in a certain city, it receives multiple mixed or-
chestration plans submitted by different EAPs and pro-
vides edge computing resources in a CaaS way[41]. As
shown in Figure 3, for this EIP, how to properly sched-
ule the submitted orchestration plans to minimize the
impact of failures is the proposed robust microservice
instance placement problem, and it aims to solve: 1)
how to place the edge AI microservice instances with
different resource requirements to heterogeneous edge
nodes to achieve a load balance between them; 2) how
to place the edge AI microservice instances from dif-
ferent applications fairly to edge nodes to achieve a
load balance between different applications. The first
target of the proposed placement problem is to bal-
ance the resource utilization among edge servers to
reduce the probability of server performance deteriora-
tion and even crash. The second target holds the idea
of “Don’t Put All your Eggs in One Basket”, and once
failures happen, it guarantees the impact of failures
on a certain application is limited, i.e., all applications
share the risks of edge resources failure fairly.

Note that it is well-recognized that edge resources
are more prone to encounter failures (e.g., network
breakdowns[17] and server crashes[46]) than cloud
resources. Therefore, in error-prone MEC environ-
ments, the proposed robust microservice instance
placement problem is also of great practical signifi-
cance.

3. System Model and Problem
Formulation

In this section, we present our system model and
give the definitions of cost-effective multiple DNN
model mixed orchestration problems for mobile appli-
cation vendors, and the robust multiple Al microser-
vice instance placement problem for edge infrastruc-
ture providers.

3.1. Cost-Effective Multiple DNN Model
Mixed Orchestration

In MEC environments, edge infrastructure and re-
sources providers deploy edge servers in the 5G core
network or User Plane Function (UPF)[23], and em-
ploy edge resource management platforms (e.g., Ku-
berEdge, K3S, Akri, ..., etc) to manage them and
provider computing services to the mobile application
vendors in a serverless way[14]. Meanwhile, mobile
application vendors are allowed to deploy their Al
business or functions at the edge end in a microservice
way to realize dynamic scaling, elastic pricing, and
continuous integration/delivery. Edge infrastructure
providers usually provide various kinds of container in-
stances with different resource configurations for mo-

bile application providers to deploy their Al microser-
vices, and we use o to denote the count of available
container instance types in this study.

An Al microservice can be implemented by multi-
ple DNN models. For example, models like ResNet,
AlexNet, LeNet, ..., etc, can be employed to imple-
ment an image classification service. In multiple DNN
model mixed orchestration schema, an Al microservice
can be implemented by various microservice instances
that are deployed in containers with different config-
urations, these instances have the same functionality
but might employ different DNN models and thus have
different QoS. Suppose a mobile application vendor
has an AI services S (e.g., image classification, text
split, signature identify, etc) to be deployed at the edge
platform. The request strength (i.e., query per second,
QPS) of Al service S is A, and there are n kinds of DNN
models M = {M |, M,, ..., M,} available to choice for
implementing S. Different DNN models have differ-
ent qualities (e.g., the accuracy of classification, the
precision of text classification, the error rate of audio
recognition) and inferential computation, we use g¢;
to denote the quality of model M;, y;; to denote the
inference speed (i.e., how many requests it can han-
dle per second) of model M; on j-th type of container
instances. Let S;; denotes the set of microservice in-
stances that employ model M; and chose j-th type of
container configuration, w;; denotes the ratio of total
request strength that allocated to the instances in S;;
(Xi) X wy; = 1), W denotes the set constructed
by all w;;. Due to the microservice instances in the
same set .S;; have the same container type, the request
strength of each instance can be calculated as:

I A wy;

ij bij >

®

In this way, the request processing of each microser-
vice instance can be modeled as an M/M/1 queue[33,
46, 44], and according to Little’s law, the expected in-
ference time can be estimated as:

1

I, =——. (2
= Ay

where y;; is the inference rate of the microservice in-
stances that employ model M; and j-th container con-
figuration, and y;; — 4;; > 0.

Let b;; denote the number of microservice instances
in set S;;, B denotes the set constructed by all b,;, p;
denotes the price of j-th container configuration pro-
vided by edge infrastructure providers (we consider on-
demand pricing model in this study, and the billing in-
tervals are accurate to the seconds). A multiple DNN
model mixed orchestration plan of Al microservice S
can thus be denoted as a 2-tuple P = (53, W), and its

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 4 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

deployment cost can be calculated as:

CBY =YY by py, 3)

i=1 j=1

and the QoS of S can evaluated as:

mm=i%(imJ 4
S5 \&

In this paper, the response time of invoking edge
Al'microservices consists of data transmission time and
model inference time [43, 24]. We use d to denote the
average input data size of the requests to Al microser-
vice S, and f to denote the average data transmission
ratios between end-users and edge servers (these data
can be obtained from historical data), the response
time of requests that dispatched to microservice in-
stances in S;; can be calculated as:

R (B,W)=1I,;+ %. 5)

Therefore, given the QoS requirement ¢ and the
response time constraint z of an Al microservice S,
its cost-effective multiple DNN model mixed orchestra-
tion problems can be formulated as:

P1 (r’giyrvl) 1 C(B), (6)
s.t. : QW) > ¢, 7
R;;(B,W) <, Vi,j (8)

2?:1 Zj:l wy =1, ©)

1> w; 20, Vw; € W (10)

b; € {0,1,2...}. vb,; € B (11)

where the target of problem P1 is to minimize the
edge Al microservice deployment cost as shown in (6);
constraint (7) indicates that the total weighted QoS
of all microservice instances meet the mobile applica-
tion vendor-defined QoS requirement; constraint (8)
states that the response time of all requests should not
exceed the defined constraint; constraint (9) guaran-
tees that all request loads have been distributed; con-
straints (10) and (11) declare the scope of the feasible
variables. It is obvious that constraints (7-8) are non-
linear, thus P1 is a Mixed-Integer-Nonlinear Program-
ming (MINLP) problem, which is known as an NP-hard
one[34].

3.2. Robust Microservice Instance Placement

After getting the AI microservice orchestration
plan, mobile application vendors will submit their de-
ployment requests (usually represented by YMAL files)
to the edge infrastructure provider to build container-
based microservice applications. Generally, an edge

docker | docker | docker docker | docker | docker docker docker docker

APP 1 APP 2 APP 3
App Placement Plan A
» Load
il Capacity
\\\Actual
Load
Edge Node 1 Edge Node 2 Edge Node 3
App Placement Plan B
Edge Node 1 Edge Node 2 Edge Node 3

Figure 4: Robust deployment of microservice instances.

infrastructure provider could receive multiple deploy-
ment requests from multiple mobile application ven-
dors for different edge Al microservices. Restricted
by the failure-prone edge notes connectivity and the
fluctuant edge server performance, how to place the
microservice instances from different mobile applica-
tions to suitable edge nodes to reduce the QoS deterio-
ration caused by edge network or edge nodes failures
is a key problem.

Edge servers under high load for a long time are
prone to crash, which leads to user-perceived QoS de-
terioration, thus the load balance of edge server is an
important metric to evaluate a microservice instances
placement plan. Besides, when an edge server crash
or lost connection happens, all their hosted microser-
vice instances will fail and out of service. These in-
stances could belong to different mobile applications
from multiple mobile application vendors. As shown
in Figure 4, we say placement plan B is better than A
because the server failure, crash, or lost connection
risks are shared by all applications, which avoids a
rapid QoS deterioration of a certain mobile application.
Therefore, the load balance of a single mobile applica-
tion among all edge servers is also an important key
indicator to evaluate a placement plan.

Suppose an edge infrastructure provider man-
ages an edge resource pool with m edge servers
E = ({e,ey,...,e,}, and provider Container-as-a-
Service (CaaS) to mobile application vendors. We use
¢, and r; to identify the CPU cores and memory size
of edge server ¢, respectively. There are total / mi-
croservice orchestration plans P = {P}, P,,..., P} of
mobile application providers’ edge AI microservices

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 5 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

S = {5}, 55,...,S;} has been submitted to this provider.
We use [, = {s}l, s%l, ...} to denote all instances that to
be launched of AI microservice S, and it can be ob-
tained from .S}’ orchestration plan P, = (3, W,).

We use function T'(s) to identify the type of con-
tainer that microservice instance s is going to be
launched, functions C(j) and M(j) to identify the
vCPU (i.e., virtual processors) cores and the mem-
ory required by the j-th container configuration, and
boolean function P(s,k) € {0,1} to indicate whether
the container that host microservice instance s is
placed to edge server e,. As some edge resource man-
agement platform as Kuberedge and K3S did, in this
study, we consider the resource utilization of an edge
server as:

1 [ket Zses, P(s. k) - C(T(5)
2 o
Yo Zses, Pls.k) - M(T(s))

ry

U, =

(12)

Similarly, the resource occupation rate of application
S3,’s microservice instances on edge server e, can be
evaluated as:
P ZseSh P(s, k) - C(T(s))
uk N E Ck
ZSES,, P(s, k) - M(T(s))

Fi

13)

Given a set of edge Al microserevice orchestration
plan P, for an edge infrastructure provide, the robust
microserevice instance placement problem can be for-
mulated as:

P2 min: — Y (G—u), 14
it m;(o a4
1 m
— Yl —tll (15)
mi=i
sty <1, Vk (16)
W <1 Yk, h a7

where i = % i, Uy is the mean value of the resource
utilization rates of all edge servers, v, = (u,lc, ui ui{)
the resource occupation rate of different applications
on server e, t = (t;,1,, ..., 1;) the ratio of total resource

required by different applications, where

1 Zses,, P(s, k) - C(T(s))
th = =

21 ¥, ZSES,, P(s, k) - C(T(s))

ZSESh P(s, k) - M(T(s))
Yot Zses, PG, k) - MT(s) |

(18)

and ||t]| = 1.

Microservices
Governance

Edge Resource
Management

P

Edge Infrastructure
maintenance

Service
provision

Service
invocation

Service S service
Registration composition
Container Microservice
resource deployment cost
Instance
Pm—— Load balance
migration
Bare metal Computing
resource resources
rental cost

Figure 5: Integration and deployment of proposed approaches.

Traffic
management

Container
management

Embedded
devices

Smart

Sty CDN Node

Base Station

As shown in (14) and (15), the targets of the place-
ment problem P2 is to achieve load balance among
edge servers and also a load balance among mobile
applications. Minimizing the variance of edge servers’
resource utilization helps to achieve a load balance
among edge servers, and reduce their failure rate.
While maintaining the resource occupation ratios of
different applications on the some edge servers close
to their total load ratios helps to spread the risk of fail-
ures fairly among all applications, reduce the server
crash impact on a certain application, and avoid to cas-
cading failures incurred by the rapid deterioration of
the response time of a certain application. This is a
combinatorial optimization problem which can be for-
mulated to a multiple knapsack problem by perform-
ing problem reduction, which is known as a NP-hard
one[7]. Therefore, the proposed robust multiple Al
microservice instance placement problem is also NP-
hard.

4. Solutions

For the two problems formulated above sections,
we propose a Three Dimension Dynamic Programming-
based algorithm (shorts for TDDP) and a Three Level
Load Balance-based heuristic algorithm (shorts for
TLLB) respectively to obtain the orchestration plans
and the placement decisions.

As shown in Figure 5, the proposed TDDP algo-
rithm can be integrated into the service dynamic scal-
ing module of microservice governance frameworks
(e.g., Eureka in Spring Cloud and Nacos in Spring
Cloud Alibaba) to generate a cost-effective deploy-
ment plan (i.e., multiple DNN model mixed orches-
tration plan in this study) under the constraints of re-
quired QoS. The proposed TLLB algorithm can be in-
tegrated into the container scheduling module of edge
resource management systems (e.g., Kube-scheduler in
KubeEdge and K3S) to generate robust container (i.e.,
microservice instance) placement plans to cope with
the high dynamic edge network and failure-prone edge

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 6 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

resources.

4.1. Three Dimension Dynamic
Programming-based Algorithm for P1

In problem P1, the weight of request load that is al-
located to a certain set of microservice instances with
the same DNN model and container type wj; is a contin-
uous variable. However, in real-world production en-
vironments, this load distribution information is usu-
ally represented in the form of a discrete level (e.g.,
the gateway weight configuration in Spring Cloud [1])
and has a minimal granularity (e.g., 1%, 2%, 5%, etc).
Therefore, as the Gateway configuration specification
in Spring Cloud, in this study, we consider the mini-
mal load allocation granularity to g = 0.01, i.e., 1%,
and propose a dynamic programming-based algorithm
(TDDP) to find the optimal multi-DNN-Model edge Al
microservice orchestration plans.

Algorithm 1: TDDP for P1

Input: Edge Al microservice S; Multiple DNN
models M for §; Request strength 4;
QoS constraint ¢; Response time
constraint ¢
Output: Orchestration plan P; P’s deployment
cost C
1 MW,Q « @
2 n< |M|
3 C « DP(n,1,¢)
4 W, B « PlanRetrieval(W, Q, n, 1)
5 return P « W, B), C

6 Function DP(i, j, k)

7 if ¢; - j < k then

8 | return oo

9 if i = 1 then

10 ¢,w,b < OptSubPlan(i, j - A, 7)

11 MLi, j, k] < ¢, W[i, j, k] < j

12 Qli, j, k] « k

13 | return c

14 S <@, v

15 for x < 0 to j with step g do

16 ¢, x, b < OptSubPlan(i, x - 4, 7)

17 ifM[i—1,j —x,k—gq;-jl# @ then
18 LseM[i—],j—x,k—q,-‘x]+c
19 else

20 s < DPli—-1,j—x,k—gq;-x)+c
21 Mi—=1,j—x,k—gq;-jl < s

22 B S<Sus
23 if S # @ then

24 v, M[i, j, k] « min(5)

25 WIi, j, k] < g- argmin(S)

26 B Qli, j, k] < k — g; - g- argmin(S)
27 | return v

Algorithm 2: OptSubPlan

Input: DNN model ID i; Allocated request load
A;; Response time constraint ;
Container type count o

Output: Sub-deployment cost ¢, Load ratios

on different type of containers w,
Instances count of different type of
containers b

1c«0, bw,g,h=0,

2 for j < 1toodo

3 ng‘—ﬂij_l/f

4 hj (_(/'{ij_l/r)/pj

5 d « get the descending order of h

6 h,g < rearrange h and g according to order d
7 while 4, # 0 do

8 t < d

9 b, — [4;/8]

10 d,g,h < remove d|, g;, h, fromd, g, h

1 A=A —b g

12 c—c+b -p,

13 for j < 1toodo

14 L w; < (b; 'llij)/ Z?:](bj “Hij)

15 return c,w, b

Algorithm 3: PlanRetrieval
Input: Weight path W; QoS path Q; Number
of DNN models n; Request strength 4;
Response time constraint =
Output: Load distribution plan W;
Microservice instance lunch count B
1 p<O0y, j<l, k¢
2 fori < ntoldo
3 p; < Wi, j, k]
4 k < Qli, j, k]
5 | JeJi—p
6 fori < 1tondo
7 ¢, w, b « OptSubPlan(i, p; - A, 1)
8 WIi, :] < w- p;
9 Bli,:1]<b // WI[i,:] and Bli,:] are
the i-th row of matrix W and B

10 return W, B

Algorithm 1 shows the process of the proposed
TDDP algorithm, it can be seen that it starts with ini-
tializing a lookup table M for the recursion of the dy-
namic programming, a weight distribution path table
W, and a QoS constraint path table Q with empty set
(as shown in line 1). Then, it steps to the dynamic
programming recursion procedure (as shown in line
3). After that, it gets the cost of optimal orchestra-
tion plan C and begins to fetch the details of the opti-
mal plan (i.e., load distribution plan W and instance

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 7 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

launch plan B) by revisiting the search path W and Q
(as shown in line 4). And finally, it returns the optimal
orchestration plan and its deployment cost (as shown
in line 5).

Recursive equation is the key component of design-
ing a dynamic programming method[9], and that of
the proposed TDDP method can be described as:

Fw.g) = min {fw.¢) +

i ;Ti_l(w—wi,qﬁ—w,- -q,-)}, i>1
Fi(w, ¢)) = f1(w, ¢y)
(19)

where F;(w) denotes the deployment cost of allocating
the proportion of w load to the microservice instances
that employ the first i DNN models and f;(w;) denotes
the cost of allocating the proportion of w; load to the
instances that employ the i-th DNN model. The recur-
sion process is shown as function DP in algorithm 1
(as shown in lines 6-28), and f;(w;) is implemented by
function OptSubPlan as shown in Algorithm 2.

As represented in the recursive equation (19), the
function OptSubPlan takes the target DNN model type
and the allocated request load as input, it first calcu-
lates the maximum load of different container types
that can bear within the constraint of response time
7, and evaluate the cost-performance of different con-
tainer types (as shown in lines 2-4 in Algorithm 2).
Then, it sorts the maximum load vector g and the cost-
performance vector h of different container types ac-
cording to the descending order of h (as shown in lines
5-6). After that, it begins to pick instances with the
highest cost-performance in turn to fulfill the allocated
request load 4; (as shown in lines 7-12). And finally,
it fairly distributes the load 4; to a different type (i.e.,
container type) of instances according to their actual
inference speed (as shown in lines 13-14).

We can obtain the deployment cost of the optimal
multi-DNN-Model orchestration plan after the recur-
sion of dynamic programming (as shown in line 3 in
Algorithm 1). However, to get the detailed plan (i.e.,
W and B), we need to revisit the decision path of the
optimal solution. A backtracking-based orchestration
plan retrieval method is shown in Algorithm 3.

For the PlanRetrieval procedure (i.e., Algorithm 2),
the time complexity of initializing vector b,w, g, h is
O(o) (as shown in line 1), where o is the count of avail-
able container types. The time complexity of evaluat-
ing the cost-performance of different container types is
also O(o) (as shown in line 2~4). The time complexity
of rearranging the index of h,g according to the de-
scending order of & is O(olog o) (as shown in line 5~6).
Finally, the time complexity of fulfilling the allocated
A; and deciding the load distributed to different types
of instances are both O(o). Therefore, the total time
complexity of the OptSubPlan procedure is O(o log 0);

For the PlanRetrieval procedure (i.e., Algorithm 3),
the time complexity of initializing vector p is O(o) (as
shown in line 1). The time complexity of revisiting
the decision path to get the load distribution among
different DNN models is O(n) (as shown in lines 2~5),
where n is the count of candidate DNN models for an
edge Al microservice. Finally, the time complexity of
building the orchestration plan in a backtracking way
is O(nologo). Therefore, the total time complexity of
the PlanRetrieval procedure is O(nolog o).

As shown in Algorithm 1, the time complexity
of initializing searching path table M, W, and Q is
O(n-m-(1/g)), where n is the count of candidate DNN
models for a certain edge Al microservice, m the dis-
cretized QoS value, and g the granularity of loads allo-
cation (set to 1% in this paper according to the spring
cloud gateway configuration). Due to 1/g equals 100
in this paper, which is a constant and thus the initial-
ization time complexity can be represented as O(nm).
According to the recursive equation defined in E.q.
(19), the time complexity of the proposed dynamic pro-
gramming procedure is O(n(1/g)olog o), which can be
represented as O(no log o). Finally, due to the time com-
plexity of PlanRetrieval procedure is O(nolog o), there-
fore the total time complexity of the proposed TDDP al-
gorithm is O(nm+nolog o). In real-world production en-
vironments, the candidate DNN models count # is usu-
ally less than 50; the QoS metrics (i.e., precision and
accuracy) are usually correct to two decimal places,
which means m less than 10%; and the available con-
tainer types o are usually less than 20 (Amazon Elastic
Container Service provides 5 kinds of configurations).
Therefore, the time complexity of the TDDP algorithm
would not become the bottleneck of the proposed ap-
proach, the follow-up experiments based on real-world
applications also show that it is capable of making or-
chestration decisions at the milliseconds level.

4.2. Three Level Load Balance-based
Algorithm for P2

For the robust multiple-edge AI microservice in-
stance placement problem, we aim to achieve a three-
level-load-balance (i.e., load balance among edge
servers, load balance among AI microservices, and
load balance among different DNN models for a certain
microservice) to reduce the impact on user-perceived
QoS resulted by the edge servers’ failures or edge net-
work’s disconnection.

As shown in Algorithm 4, the proposed TLLB meth-
ods first calculate the resource proportion of every
edge server n E (as shown in lines 2-3), this is to es-
timate the targets load of edge servers to guide the
follow-up placement. Then, it begins to perform the
placement step for every orchestration plan that has
been submitted (as shown in lines 4-25).

In the placement procedure for a certain plan (i.e.,
an edge Al microservice), it first calculates the optimal

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 8 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

Algorithm 4: TLLB for P2

Input: Submitted orchestration plans P; I, the
set of microservice instances of plan P,
;Set of edge servers E
Output: Placement plan P
12,88 < Og, P<Oyxepr 4 <0
2 for e, € E do
3 z;, « get the resource proportion of server
e, in E
4 for h < 1to |P|do
L, « calculate the total load of instances
in P,
6 | Rj, « calculate load ratios of the instances
with different DNN models in P,
7 I, < sort I, in a descending order
according to instances’ required resources
8 foreach ¢, € E do
L ty < Ly-z
10 | while|I,| #0do

11 r « get the resource required by s}l
12 foreach ¢, € E do
13 L Sy <ty —r
14 C « find all candidate edge servers in
E with the same score: max(s)
15 foreach ¢, € C do
16 if no instance with the same DNN
model of s}l that has been placed to
e; then
17 d <k
18 break
19 if d =0 then
20 foreach ¢, in C do
21 sy « calculate the score of ¢
according to E.q. (20)
22 d « argmin s,
1<k<|C|
23 ty <t —r
24 P(s;.d) < 1
25 | I, < remove s, from I,

loads of different edge servers for the current microser-
vice to achieve the first two load balances (as shown
in lines 8-9). Then, it begins the loop of placing the
instance with the highest required resource, i.e., s}l,
in turn to its most suitable server. To find the target
edge serves for every microservice instance, it first cal-
culates the distance of an edge server’s load after place-
ment to its optimal load calculated in the previous step
(as shown in lines 11-13). The proposed TLLB method
tends to place the current instance to the edge serve
with the shortest such distance, the reason for doing
this is because the later instances to be placed have

lower required resources, and this strategy helps to
fill up the target loads of edge servers more smoothly.
Note that, there could be multiple edge servers that
have the same distance, and we use C to denote them.
Under this circumstance, we consider the load balance
among instances that employ different DNN models to
finalize the target edge server. It can be seen that it
first tries to find an edge server without being placed
any instances with the same DNN model (as shown in
lines 15-18). If there is no edge server qualified, TLLB
will evaluate a score for every server in C and place
s}l to the server with a minimum score (as shown in
19-25). Let R, and y, denote the load ratios of the
instances with different DNN models in plan P, and
edge server ¢, respectively, to achieve the third level
of load balance, we define the score of server in C to
the cosine distance between R, and y;:

5 = Ry vy
TR

It can be seen that TLLB prefers the edge server with
better load balances on instances with different DNN
models. That is because different DNN models have
different QoS, and the fluctuation of user perceived
QoS incurred by server crashes or network failures can
be alleviated by performing third load balance.

For a submitted orchestration plan P,, the time
complexity of calculating the total load, load ratios
with different DNN models, and sorting microservice
instance set I}, is O(|1,| log |I,,|) (as shown in lines 5~7
in Algorithm 4). The time complexity of finding all
candidate edge servers C in E for a certain instance
is O(|E|log | E|) (as shown in lines 11~14). The time
complexity of placing a microservice instance to the
most suitable candidate is O(|C|), where |C| < |E]|.
Therefore, the total time complexity of generating the
microservice instance placement solution for a submit-
ted orchestration plan is O(|I,,| - (log | I,,| + | E| log | E])).

(20)

5. Experiments and Analysis

To verify the effectiveness and efficiency of the
proposed solution, a series experiments based on real-
world edge server configurations and Al microservices
performances are conducted. In this section, we first
introduce the settings of our experiments, then show
the results of comparisons between ours and the state-
of-the-art ones.

5.1. Experiments Settings

We consider 4 kinds of real-world edge servers for
edge infrastructure providers to build their edge re-
source pool, Table 1 detail their configurations and
count. Edge Al application vendors acquire edge re-
sources in a container way and we consider 5 kinds
of container types as Amazon AWS Fargate did, Ta-
ble 2 shows their configurations and prices. There are

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 9 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

0.8 20

M : ResNet-101 M RetinaNet

M, SpineNet-190
er R-CNN
R-CNN

e
o
>

8

=
3

Inference Rate
*

Inference Rate
=

w
S

Recognition Accuracy (%)

o
o

/

Wr MGGUNet
W: BSN
My SSN
\14 R-C3D
- -A- - M TURN-TAP
—o— MaMsCNN [/2

&
3
o

IS

Inference Rate
oo
MAP@0.5

7 IS W N VIS AN

&

0- 0.6
Xs s M L
Container Type

M L

M, M, M, M, M_ M, :
Container Type

DNN models for Sl

(a) Image classification service §,.

XL

(b) Object detection service .S,.

M, M, M, .&14 Mg Mg
DNN Models for S,

M L
Container Type

XL M, M, ‘WJ, M, ‘Wj M,

DNN Models for S

(c) Action recognition service ;.

Figure 6: Inference rate and QoS of different DNN models on containers with different configurations.

Table 1
Edge servers configurations

Server Type Cores RAM Storage Network Count
Huawei TaiShan
2980E 16 32GB 2TB 4x10 GE 10
ZTE E5430 G4 MEC 32 64 GB 2TB 2x10 GE 4
Dell PowerEdge
XE2420 32 96 GB 8TB 2x10 GE 4
Lenovo ThinkServer 128
SE550 48 cB 12TB 2x10 GE 2
Table 2
Container configurations and prices
Container Per vCPU per Per GB per
Type vePU RAM hour (USD) hour (USD)
XS 0.25 0.5 GB 0.0032 0.0004
S 0.5 1GB 0.0064 0.0007
M 1 2GB 0.0129 0.0014
L 2 4GB 0.0258 0.0028
XL 4 8 GB 0.0515 0.0057

3 kinds of edge AI microservices (i.e., image classifi-
cation S|, object detection .S,, and action recognition
S3) and we consider 6 candidate DNN models for each
of them. Specifically, ResNet 101, MnasNet, DenseNet
121, MobileNet V2, ShuffleNet V2, and AlexNet mod-
els are available for image classification applications;
RetinaNet, SpineNet-190, Faster R-CNN, Fast R-CNN,
R-CNN, and YOLOv3 for object detection; MGGUNet,
BSN, SSN, R-C3D, TURN-TAP, and MSCNN for action
recognition. As shown in Figure 6, we collect the QoS
(i.e., response time and accuracy) of different edge Al
microservices that employ different DNN models on
different kinds of containers to conduct our experi-
ment.

The proposed approaches and all baselines are im-
plemented with MATLAB R2021b and all experiments
are conducted on a PC with Intel Core i5 (Quad-Core,
3.8GHz), 8Gb RAM, and 512Gb storage. All cases are
evaluated 50 times and the mean performances are
recorded.

5.2. Deployment Cost Evaluation

For the multiple DNN model orchestration prob-
lem of edge Al microservice, we consider the following
methods as baselines:

DFS[28]: finding the optimal orchestration plan
by performing a Depth-First-Search (DFS);

BGA +BAR[25]: a meta-heuristic algorithm
that first employ the binary genetic algorithm to
find the preliminary solution, then a bottleneck-
analysis-based solution is performed to finalize
the orchestration plan;

SG[15]: a simple greedy heuristic that only
chooses one DNN model that satisfies the QoS
constraints and always selects the container type
with the lowest price;

BG[10]: a bidirectional greedy heuristic that al-
ways chooses the DNN model with the highest
QoS inference time ratio and cheapest container
type that fulfills the QoS constraints at different
stages.

GrandSLAm[13]: a heuristic microservice ex-
ecution framework that only consider a single
container type (i.e., M size in our experiments),
it firsts pushes candidate microservice instances
into an ascending priority queue in terms of esti-
mated slack time, then increases the batch count
of instances until QoS constraints are about to be
unsatisfied.

The QoS constraints and request load of 3 edge AI mi-
croservices in our experiment environments are shown
in Table 3.

Results: Figure 7 compares the deployment cost in-
curred by the proposed TDDP approach and its peers
under different load situations and QoS constraints,
and Figure 8 shows the decision time (i.e., CPU elapsed
time) of them. It can be seen that the proposed
TDDP approach achieves the lowest deployment in all
three microservice cases, more specifically, the deploy-
ment cost of TDDP are 1.8%, 1.1%, and 0.67% lower
than DFS in three cases on average; 67.7%, 68.66%,

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 10 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

Table 3
QoS constraints and request load settings

Response time constraint (s)

QoS constraint

Edge Al Microservice QPS

S,: Image classification 50 ~ 600
S,: Object detection 50 ~ 600
S5: Action recognition 50 ~ 300

02~1 65% ~ 74% (Accuracy rate)
02~1 34 ~ 39 (Box AP)
08~16 22 ~ 34 (MAP@O.5)

and 65.79% lower than BG in three cases on average;
71%, 73.15%, and 70.99% lower than GD on average;
70.76%, 35.54%, and 41.20% lower than BGA + BAR
on average; 62.73%, 56.6% and 56.63% lower than
GrandSLAm on average. DFS performs close to the pro-
posed TDDP deployment cost but at the cost of a higher
decision time. We can learn from the Figure 8 that the
BG and SG approach gets the lowest decision time, the
proposed TDDP costs slightly higher time than them
but much lower time than DFS and BGA + BAR meth-
ods, more specifically, the decision time of TDDP are
57.39%, 62.16%, and 73.25% lower than DFS in three
cases on average; 94.04%, 80.88%, and 83.4% lower
than BGA +BAR on average.

Analysis: The reason why the proposed TDDP gets the
lowest deployment cost lies in that it investigates ev-
ery possible multi-DNN model orchestration plan as
DFS did. But different from the exhaustive search
of DFS, the dynamic programming and pruning fea-
tures of the proposed TDDP can significantly reduce
the search scope and thus shorten the decision time.
The TDDP outperforms the BG because it leverages the
advantages of different DNN models and employs mul-
tiple DNN models to fulfill the QoS requirement of a
single edge Al microservices. Through the GD heuris-
tic gets the lowest decision time, its simple greedy de-
ployment strategy limits its capability of finding high-
quality deployment plans. Same as a heuristic method,
the BGA + BAR achieves a better performance than GD,
however, its iterative optimization suffers from high
time complexity and results in the highest CPU elapsed
time. The reason why TDDP outperforms the Grand-
SLAm lies in that TDDP considers various container
types with different configurations to build orchestra-
tion plans, which helps to smoothly fulfill the various
request demands. While the GrandSLAm only consid-
ers one type of container, which may lead to unneces-
sary resource waste and finally result in high deploy-
ment costs.

5.3. Effects Analysis of Resources Failure

In our experiments, we also evaluate the effect of
different microservice instance placement approaches
when encountering edge resource failures. As related
studies[37, 3] did, we randomly choose a certain pro-
portion of edge nodes and disable them to simulate
edge resource failures. For the robust edge AI mi-
croservice placement problem, we consider the follow-

ing real-world container scheduling policies as base-
lines:

— LRP[5]: Least-Requested-Priority placement
policy that always schedules pods (i.e., new mi-
croservice instances) to edge nodes with the low-
est resource utilization rate;

— LRP-E[5]: similar to LRP except that the pods
are preferentially placed to the edge nodes with
the lowest load;

— Spread[20]: it prefers placing newly arriving in-
stances to the edge node with the lowest number
of hosted containers;

— SSP[19]: Selector-Spread-Priority placement
policy that aims at distributing the instances of
the same microservice to different edge nodes;

— Random: a random placement policy that ran-
domly selects edge nodes to host microservice
instances.

where LPR, LPR-E, and SSP are candidate pod place-
ment policies of Kubernetes, and Spread is the default
container placement policy of Swarm. We control the
proportion (from 10% to 50%) of edge resources that
encounter failures and observe the impact of these fail-
ures on the QoS of deployed edge Al microservices.
Results: Figure 9 shows the change in response time
and accuracy rates of the deployed 3 edge Al microser-
vices faced with different scales of failures. As in the
previous experiment, the deployed 3 applications are
image classification application (IC APP); Object de-
tection application (OD APP); and Action recognition
application (AR APP); It can be seen that with the
increase of unavailable edge resources, the response
time of all three microservices shows an increasing
trend, and the response time fluctuation of the pro-
posed TLLB placement strategy is much lower than
other policies. Besides, the fluctuation of the accu-
racy rates under the TLLB placement strategy is also
much lower than other policies. Table 4 shows the nu-
merical analysis of them, and it can be seen that the
proposed TLLB placement strategy achieves the lowest
load standard deviations on both the edge server view
and application view, which indicates less and limited
QoS variation when an encounter with edge resources
failures.

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 11 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

25 1.2 0.9 D
DFS b DFS ---g---GD
- -+ --TDDP 1 — -4~ -TDDP oo @ BGA+BAR 0.8 5
B 2f|—%— BG) .. | —%—BG GrandSLAm Ep
2 ——g--GD 3 h_ - 807
31 ------- ©- BGA+BAR gO-Sg 506k
- 5 GrandSLAm s | PSR T
2 2 0.6} 2 0.5F
8 8 8 =
= 1 = =
g) 504 504~ A DFS --—&-—GD
£ 2 £ E0sf |--+--TDDP @ BGA+BAR
2 n% T = 2T 3 .
%0.5 L7 I St S N S S = SR = —%—BG Gr'mdSI:Am
a b A N 02F [T
@’__'__-k"’ & - F
0 0 0.1
100 200 300 400 500 600 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.66 0.68 0.7 0.72 0.74
Query per second Response time constraint (s) QoS constraint (MAP@0.5)
(a) Image classification microservice.
14 1 8 8
DFS > A , T TR———T .L
2. 4 _TppP A _ _'t|--+--TDDP ...Q--BGA+BAR | -1
5 — % BG =g 56 Sep|—+—BC GrandSLAm [
210F| & cp g =) 2
2 [@~ BGA+BAR | & 25 2
e 8 GrandSLAm 1~ @4 @
S 6 S @ S
= B3 s
g OO g g
58 =0} 5o 5
=} e = =
a e a a
93 j7 73
=] al A
0
100 200 300 400 500 600 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 34 35 36 37 38 39
Query per second Response time constraint (s) QoS constraint (MAP@0.5)
(b) Object detection microservice.
12 6 6
DFS h . DFS IL
10 - -+ - -TDDP §5) s s - -+ - -TDDP]
5 5 ¥ 5 7
2 2 2 i
B 5 b 5 4| e @ BGA+BAR o - |
93 ;‘ (:' GrandSLAm |
Z 23 7 3T =
=} o (=3
2 2 S
=] = =1 0.
5] Sl (- 5%}
E § as g -0 o O’"'@“‘-o---.@ o (o) D
B B B . e {
o o o - -
E g e A g

=)

150
Query per second

200 250

e
)

Response time constraint (s)

=)

1.2 1.4 26 28 30

QoS constraint (MAP@(.5)

32 34

(c) Action recognition microservice.

Figure 7: Comparison of

Analysis: The proposed TLLB placement approach
outperforms its peers because it not only considers the
load balance between edge servers but also balances
the load among different applications. In this way, the
deployed application share the risk of edge resources
failures and the potential cascade crashes are avoided
if they have a dependent relationship. Besides, it also
considers the load balance among different DNN mod-
els for a certain microservice, which further guaran-
tees the stationarity of deployed edge Al microservices,
i.e., minimizing the QoS fluctuation as far as possi-
ble when encountering edge resource failures. To sum
up, the three levels load balance strategy of the pro-
posed TLLB placement approach guarantees the fair-
ness of risk and load in the edge server, deployed ap-
plication(microservice), and DNN model levels, which
helps to eliminate the impact of edge resources failures
as far as possible (as shown in the lowest response time

deployment cost.

in Table 4).

6. Related Works

In recent years, the philosophy of cloud-native
has been widely accepted by mainstream software
providers and become a guideline to fully embrace
the cloud ecosystem in the post-cloud era. The key
idea of building an application that meets the cloud-
native requirement is to employ the microservice ar-
chitecture to improve flexibility and maintainability,
and fully leverage the cloud infrastructure to achieve
elastic scaling, dynamic scheduling, and higher re-
source utilization [16]. In this section, we first re-
view the related studies on Al microservices and the re-
cent progress of microservices governance at the edge.
Then, we analyze the limitation of current studies
and discuss the meaning/necessity of investigating the
cost-effective and robust deployment of Al microser-

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 12 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

o 15 0.2 15 0.3 136
B-A A orrofAenens DFS
016 A A i ABopAe] B A = 025k A A, TDDP =
= 14s = [N N N N N | s o AT Ty A | BG 2
2014 £ Zos PN N N % § @ BB aD 134 2
Eo.n2 = £ = Eo GrandSLAm| -
g 135 g 133 e BGA+BAR %
2 0.1 g -2 g 2 7 1325
5 A 5 0.1 a 5015 o)
20.08 — 2 - A -
= 12/ = 127 = A ~
50.06f e ——ap = 5 3 501 A 13 %
s || TR + = 005+ [RV + = 2 +
So.04 TDDP GrandSLAm|], & ~ 3005f| A DFS *---- GD L= < o=
BG BGA+BAR . g TDDP GrandSLAm | 1% % 0.05 ¢ g
0.02 v g —7—BG BGA+BAR a 1282
0 Mot e, e et ot ettt] | N A, , st =ty e et vt vt i i e
100 200 300 400 500 600 03 04 05 06 07 08 09 65 .70 75
Query per second Response time constraint (s) QoS constraint (Accuracy rate %)
(a) Image classification microservice.
1. 1. 1.4 132
A Ao Ao 3 A A A AT A 3 3
N A A B B A WAV V% A _ L .
08 =z 08 = 12 A---.A 132
507 14 0.7 ldg 2 N £
> 3 > = o 1 3 1.28E
£06 5 £0.6 g £ “, [t DFS z
= 133 = 1.3% = 4- ~x7--BG 17
£0s Zz Sos 2 o038 v 1262
2 2 2 g 2 TDDP 2
Q04 e 0.4 e 20.6 -=%----GD 1242
’@0 5 3 ’@0 5 2 7 GrandSLAm <
g V. m oU. m 5 m
£ [A—DFS —-—aD 3 £ [-A-DFS -——»-GD % 204 BGA+BAR 1224
=021 -v--BG GrandSLAm |1.1 5 =02f_ -¥--BG GrandSLAm || 1.1g5 = A 0]
0.1 TDDP BGA+BAR | 2 0.1 TDDP BGA+BAR | &2 0.2 AA 128
WP Ol nte ot b e et ke Olnte ot ot b wte ot vt D] g
100 20((5 300 400 500 600 03 04 05 06 07 08 ()).9 34 35 36 37 38 39
uery per second esponse time constraint (s QoS constraint (Accuracy rate %)
(b) Object detection microservice.
0.6 15 0.6 15 1.4 138
&A‘A
P YN N N AN N - A v L) o 0.5 Pl B A e e B B = 12 =
P 1.4 2 o 1.4 g 2 A, 1365
2 £ 2 £ 2 A :
Eoa E Eo4 = g z
133 133 24 of e DFS 2
§ 2 § - éo.g - _A_ Be 134
403 S 403 £ % v A A
TDDP -
a 128 2 128 206 D =
202 = 202 = & 1325
3 o 8 M 204 GrandSLAm A
g [A DFS ——3%-—- GD x £ [-~A-DFS -——-—GCD 4 =0 BGA+BAR 4
“o1|-"V-- BG GrandSLAm (1.1 5 “oal- -y--Ba GrandSLAm |11 & =~ o]
TDDP BGA+BAR | & TDDP BGA+BAR | & 02 138
N P S I Qlnt ot e e e e ol e e
50 100 150 200 250 300 0.8 1 L 14 1.6 24 26 28 30 32 34
Query per second Response time constraint (s) QoS constraint (Accuracy rate %)
(c) Action recognition microservice.
Figure 8: Comparison of execution time.
Table 4
Numerical analysis of the edge resource failure experiment
. Std of Edge servers’ , , , Average response
Algorithm g Std of Appl’s load Std of App2 load'’s Std of App3’s load ge resp
load time
TLLB 0.0078 0.0066 0.0067 0.0031 16.3313
LRP 0.3778 0.2660 0.4245 0.3728 18.3556
LRP2 0.4326 0.2660 0.4084 0.3794 20.8695
Spread 0.5134 0.1751 0.1625 0.2056 23.0064
SSP 0.5511 0.1751 0.1746 0.2171 23.6266
Random 0.4690 0.1712 0.1921 0.2191 20.1012

vice in the edge environment.

6.1. AI Microservices

With the increasing popularity of Al-based appli-
cations among end-users, more and more application
providers begin to deliver Al services in a microser-

vice manner, and the management of Al microservice
thus becomes a hot issue. For example, Kannan et
al. [13] proposed an SLA-guaranteed microservice ex-
ecution framework for AI and ML applications, shorts
for GrandSLAm. They first analyze the difference be-
tween classic and AI/ML-based microservices in terms

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 13 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

TLLB 75 TLLB
5
__ 2.5{f mm— IC APP = h-A-A-A-A-A-A-A-A- 361,
<, lf mmm—— OD APP < g
g AR APP g o-{as
E 1.5 | — e I1C APP =
@ & 70] I
g, 3 - -A--0OD APP 32
: 3 AR APP <
& 1= 30 %
& 05 < A
0 65 28
10% 20% 30% 40% 50% 20% 30% 40% 50% 60%
Failure edge resources Failure edge server count
4 LRP-E 75 LRP-E
T ATETETIST AL
|| v 1C APP s F A-A-A Ly,
Z 3| m—— 0D APP s ot IC APP g
g AR APP gL - -A--OD APP [l34¢,
= = - oy, ARAPP || =
32 g7o T 2
S g i <
2 1 | | £ 30:§
0 65 28
10% 20% 30% 40% 50% 20% 30% 40% 50% 60%
Failure edge resources Failure edge server count
SSP SSP
5 75
|| e IC APP s POOCOB-0-06-6-0-0-136=
2 4| p— OD APP g SO I
%, AR APP ® A AA L 345
b >70}[Ao IC APP | Lol S
22 8 ||--o--0D APP 324
2 3 AR APP <
=L) iy
0 . . - 65 28
10% 20% 30% 40% 50% 20% 30% 40% 50% @ 60%

Failure edee resources Failure edee server count

LRP - LRP
5 CE
; P-0-0-0-00-0-n-9
—3 I C APP I N S IC APP 361
= m OD APP < %
g AR APP g ~~O--ODAPPY,, 2
g 8 [y i AR APP [|7"<
3 g70 E 32§
Q 5 Berrrefrnnns
21 3 o T
g g 305
0 65 28
10% 20% 30% 40% 50% 20% 30% 40% 50% 60%
Failure edge resources Failure edge server count
Spread Spread
5 L 75 :
— || v 1C APP g PO-C-0-0-0-0-0-0-]3x=
= 4 B S
o || — OD APP > 34(8
ER AR APP g frddggea o . o 7S
z §7O wrrorn IC APP 32i
52 5 --@--ODAPP| &
Z
£ " " 8 AR APP 30 2
0 65 28
10% 20% 30% 40% 50% 20% 30% 40% 50% 60%
Failure edge resources Failure edge server count
Random Random
75)
~3 [IC APP g FVV-V-V-7-VV-V-136=
= | | e OD APP S g
£ AR APP g pre o-]34%
= 2 ;70 i@ IC APP S
2] - -7~ -0D APP 325
21 3 AR APP <
$ g 304
o« < @
0 - — 65 28
10% 20% 30% 40% 50% 20% 30% 40% 50% 60%

Failure edee resources Failure edee server count

Figure 9: QoS variation after encounter edge resource failures.

of specific SLA metrics. Then, they train a regression-
based model to estimate the completion time of the
coming request. And finally, they derive the individ-
ual stage SLAs for each microservice/stage based on
the predicted response time and developed a dynamic
batching algorithm to schedule requests while meeting
the SLA constraints. To achieve elastic and scalable
Network Function Virtualization (NFC), Nekovee et al.
[22] proposed an Al-enabled microservice architecture
and analyzed its potential features for live streaming,
smart safety, and enterprise VPN. Chang et al. [2] de-
veloped a composable and self-evolving microservices-
based approach to transform Al-accelerated applica-
tions into secure, scalable, and composable enterprise
microservices. And Rausch et al. [27] investigated
the possibility of realizing a seamless end-to-end intel-
ligent edge system by employing the Al-empowered
cyber-physical fabric. For the secure and reliable de-
ployment of Al microservices, Muthusamy et al. [21]
employed AI methods to understand the relation be-
tween Al models and business Key Performance Indi-
cators (KPIs), and proposed a data-driven approach
to detect the potential deployment risks. While Zhao
et al. [49] targeted the Al model sharing scenarios
and proposed a microservices-based ML model pack-
aging/sharing platform (shorts for Acumos).

6.2. Microservices Governance at Edge
Meanwhile, to smoothly deliver QoS-guaranteed
services at the edge and improve the utilization of
precious edge computing resources, the smart gov-
ernance of microservices at the edge has attracted
a lot of attractions. For example, to continuously

provision QoS-guaranteed services and achieve self-
adaptive system governance when faced with massive
requests and personalized demands, Heetal [11] pro-
posed EPF4M (a programming framework) and EI4MS
(an infrastructure for self-adaptive microservice sys-
tems) to build a cloud-edge environment-based mi-
croservice architecture. In their approach, service
systems are allowed to redeploy their microservices
with the changes of the fluctuant QoS requirements,
and they proposed a two-phase strategy to minimize
the redeployment overhead. In order to achieve a
user-mobility-aware microservice redeployment, they
also proposed three heuristics [12] and evaluated
their performances by integrating them into Kuber-
netes. Samanta et al. [29] considered the network
delay and network price as microservice scheduling
targets and proposed a Lagrangian multiplier-based
dynamic microservice scheduling framework. Simi-
larly, Wang et al. [38] took the mobility of end-users
into consideration and considered the service delay
and cost as scheduling targets. They first proposed a
dynamic programming-based offline microservice co-
ordination algorithm to yield global optimal sched-
ules. However, this offline algorithm heavily relies on
prior knowledge and suffers from low efficiency. Then,
they formulated the microservice scheduling problem
to a Markov decision process (MDP) and proposed
a reinforcement learning-based online solution. Liu
et al. [18] proposed a fuzzy-control-based algorithm
(FSODM) to autonomously scale the deployed edge mi-
croservice in the runtime. Zhao et al. [45] investi-
gated the redundant deployment of microservices in

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 14 of 17

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

distributed edge environments. They proposed a Ge-
netic algorithm-based algorithm for the edge server se-
lection and a Monte Carlo simulation-based approach
for the redundant placement framework. However,
their solution only supports edge microservice applica-
tions with a sequential combinatorial structure. Filip
et al. [8] proposed a novel microservice scheduling
model by performing a particular mathematical formu-
lation on heterogeneous cloud-edge environments. Vil-
lari et al. [35] proposed user-location-aware edge mi-
croservice orchestration deployment approach by in-
troduce server geographical constraints.

A careful investigation into the aforementioned
studies shows that they are still limited in three ways:
1) the scheduling granularity of most existing Al mi-
croservice governance solutions still remains at the ser-
vice level, seldom touching the DNN model level. How-
ever, dynamically changing the orchestration plan of
different DNN models to fulfill the QoS requirement of
the microservices could further reduce the deployment
cost of EAPs; 2) most current microservice placement
algorithms only consider the load balance and deploy-
ment affinity on the edge nodes level or application
level. However, when we consider the mixed orches-
tration of different DNN models to implement a mi-
croservice, applying these traditional placement strate-
gies may fail to fulfill the QoS constraints; 3) most
of the existing studies mainly focus on one of the mi-
croservice orchestration or placement problems on the
edge environments only. However, in real-world ap-
plication scenarios, we usually need to integrate both
of them into an edge Al microservice governance so-
lution, and composing orchestration and placement
strategies with different design goals and philosophies
may result in low system efficiency and additional op-
erational overhead. Thus, the edge Al microservice or-
chestration and placement problems need to be solved
together and the corresponding strategies should sup-
plement each other to reduce internal friction.

Therefore, the coherent and collaborative orches-
tration and placement algorithms, which consider the
mixed orchestration of different DNN models to imple-
ment an edge Al microservice, are in high demand to
solve the cost-effective and robust deployment of Al
microservice in the MEC environments.

7. Conclusion and Further studies

This study proposed a novel cost-effective multi-
ple DNN model mixed orchestration problems for edge
Al microservice deployment for mobile application
providers and its corresponding robust microservice
instance placement problem for edge infrastructure
providers. To solve the first problem, we developed
a three-dimension-dynamic-programming-based algo-
rithm that can yield the optimal deployment plan of
edge Al microservice when considering multiple DNN
model orchestration. For the microservice instance

placement problem, we proposed a three-level bal-
ance method that is capable of balancing the load be-
tween servers, applications, and DNN models. The pro-
posed algorithms can easily be integrated into current
popular microservice governance and edge resources
management platforms (e.g., Spring Cloud, Dubbo,
KubeEdge, etc). The experiment based on real-world
edge Al applications and DNN models has demon-
strated that the proposed orchestration and placement
methods can significantly reduce the deployment cost
of edge Al service and the performance degradation
when encountering failures compared with traditional
approaches.

For our further studies, we will address the follow-
ing concerns: 1) some temporal data mining methods
(e.g., LSTNet and TPA-LSTM) can be employed to pre-
dict end-users future request strength, and based on
this information, the corresponding runtime edge Al
services automatic scaling approaches can be devel-
oped to save more deployment costs for mobile appli-
cation providers; 2) we only consider public edge re-
source providers in this study, for our future works, a
mixed edge resource pool constructed by private edge
cloud and public edge cloud will be well investigated
to achieve a more cost-effective edge Al service gover-
nance; 3) more Quality-of-Experience (QoE) metrics of
edge Al microservices such as service satisfaction, lag-
ging time, and reliability should be well investigated
to build a user-experience-centric edge Al service pro-
vision model.

References

[1] Carnell, J., Sdnchez, I.H., 2021. Spring microservices in action.
Simon and Schuster.

[2] Chang, R.N., Bhaskaran, K., Dey, P., Hsu, H., Takeda, S.,
Hama, T., 2020. Realizing a composable enterprise microser-
vices fabric with ai-accelerated material discovery api services,
in: 2020 IEEE 13th International Conference on Cloud Com-
puting (CLOUD), IEEE. pp. 313-320.

[3] Chantre, H.D., da Fonseca, N.L., 2018. Multi-objective opti-
mization for edge device placement and reliable broadcasting
in 5g nfv-based small cell networks. IEEE Journal on Selected
Areas in Communications 36, 2304-2317.

[4] Cisco, U., 2020. Cisco annual internet report (2018-2023)
white paper. Cisco: San Jose, CA, USA .

[5] Da Silva, G.F., Brasileiro, F., Lopes, R., Morais, F., Carvalho,
M., Turull, D., 2020. Qos-driven scheduling in the cloud. Jour-
nal of Internet Services and Applications 11, 1-36.

[6] De Lauretis, L., 2019. From monolithic architecture to mi-
croservices architecture, in: 2019 IEEE International Sym-
posium on Software Reliability Engineering Workshops (ISS-
REW), IEEE. pp. 93-96.

[7] Feng, Y., Wang, G.G., 2022. A binary moth search algorithm
based on self-learning for multidimensional knapsack prob-
lems. Future Generation Computer Systems 126, 48-64.

[8] Filip, I.D., Pop, F., Serbanescu, C., Choi, C., 2018. Microser-
vices scheduling model over heterogeneous cloud-edge envi-
ronments as support for iot applications. IEEE Internet of
Things Journal 5, 2672-2681.

[9] Forootani, A., Iervolino, R., Tipaldi, M., Dey, S., 2022. Trans-
mission scheduling for multi-process multi-sensor remote esti-

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 15 of 17

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

mation via approximate dynamic programming. Automatica
136, 110061.

Haugland, D., 2007. A bidirectional greedy heuristic for the
subspace selection problem, in: International Workshop on
Engineering Stochastic Local Search Algorithms, Springer. pp.
162-176.

He, X., Tu, Z., Xu, X., Wang, Z., 2019. Re-deploying microser-
vices in edge and cloud environment for the optimization of
user-perceived service quality, in: International Conference
on Service-Oriented Computing, Springer. pp. 555-560.

He, X., Tu, Z., Xu, X., Wang, Z., 2021. Programming frame-
work and infrastructure for self-adaptation and optimized evo-
lution method for microservice systems in cloud—edge environ-
ments. Future Generation Computer Systems 118, 263-281.
Kannan, R.S., Subramanian, L., Raju, A., Ahn, J., Mars, J.,
Tang, L., 2019. Grandslam: Guaranteeing slas for jobs in
microservices execution frameworks, in: Proceedings of the
Fourteenth EuroSys Conference 2019, pp. 1-16.
Kjorveziroski, V., Filiposka, S., 2022. Kubernetes distributions
for the edge: serverless performance evaluation. The Journal
of Supercomputing , 1-28.

Lai, P., He, Q., Cui, G., Xia, X., Abdelrazek, M., Chen, F., Hosk-
ing, J., Grundy, J., Yang, Y., 2019. Edge user allocation with
dynamic quality of service, in: International Conference on
Service-Oriented Computing, Springer. pp. 86-101.
Leppanen, T., Savaglio, C., Lovén, L., Jarvenpaa, T., Ehsani,
R., Peltonen, E., Fortino, G., Riekki, J., 2019. Edge-based mi-
croservices architecture for internet of things: Mobility analy-
sis case study, in: 2019 IEEE Global Communications Confer-
ence (GLOBECOM), IEEE. pp. 1-7.

Li, X.Y., Lin, W., Chang, J.M., Jia, X., 2022. Transmis-
sion failure analysis of multi-protection routing in data center
networks with heterogeneous edge-core servers. IEEE/ACM
Transactions on Networking .

Liu, C.C., Huang, C.C., Tseng, C.W., Yang, Y.T., Chou, L.D.,
2019. Service resource management in edge computing based
on microservices, in: 2019 IEEE International Conference on
Smart Internet of Things (SmartloT), IEEE. pp. 388-392.
Mao, Y., Fu, Y., Zheng, W., Cheng, L., Liu, Q., Tao, D., 2021.
Speculative container scheduling for deep learning applica-
tions in a kubernetes cluster. [EEE Systems Journal .
Menouer, T., 2021. Kcss: Kubernetes container scheduling
strategy. The Journal of Supercomputing 77, 4267-4293.
Muthusamy, V., Slominski, A., Ishakian, V., 2018. Towards
enterprise-ready ai deployments minimizing the risk of con-
suming ai models in business applications, in: 2018 First In-
ternational Conference on Artificial Intelligence for Industries
(AI4I), pp. 108-109. doi:10.1109/AI41.2018.8665685.
Nekovee, M., Sharma, S., Uniyal, N., Nag, A., Nejabati, R.,
Simeonidou, D., 2020. Towards ai-enabled microservice ar-
chitecture for network function virtualization, in: 2020 IEEE
Eighth International Conference on Communications and Net-
working (ComNet), IEEE. pp. 1-8.

Panek, G., Fajjari, L., Tarasiuk, H., Bousselmi, A., Toukabri, T.,
2022. Application relocation in an edge-enabled 5g system:
Use-cases, architecture and challenges. IEEE Communications
Magazine .

Peng, Q., Wu, C,, Xia, Y., Ma, Y., Wang, X., Jiang, N., 2021.
Dosra: A decentralized approach to online edge task schedul-
ing and resource allocation. IEEE Internet of Things Journal
9, 4677-4692.

Peng, Q., Xia, Y., Wang, Y., Wu, C., Luo, X., Lee, J., 2019. Joint
operator scaling and placement for distributed stream process-
ing applications in edge computing, in: International Confer-
ence on Service-Oriented Computing, Springer. pp. 461-476.
Porambage, P., Okwuibe, J., Liyanage, M., Ylianttila, M.,
Taleb, T., 2018. Survey on multi-access edge computing for
internet of things realization. IEEE Communications Surveys

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

& Tutorials 20, 2961-2991.

Rausch, T., Dustdar, S., 2019. Edge intelligence: The con-
vergence of humans, things, and ai, in: 2019 IEEE Interna-
tional Conference on Cloud Engineering (IC2E), pp. 86-96.
doi:10.1109/IC2E.2019.00022.

Sadeghiram, S., Ma, H., Chen, G., 2021. Priority-based se-
lection of individuals in memetic algorithms for distributed
data-intensive web service compositions. IEEE Transactions
on Services Computing .

Samanta, A., Tang, J., 2020. Dyme: Dynamic microservice
scheduling in edge computing enabled iot. IEEE Internet of
Things Journal 7, 6164-6174.

Sanchez-Gallegos, D.D., Gonzalez-Compean, J., Carretero, J.,
Marin, H., Tchernykh, A., Montella, R., 2022. Puzzlemesh: A
puzzle model to build mesh of agnostic services for edge-fog-
cloud. IEEE Transactions on Services Computing .

Stefani¢, P., Cigale, M., Jones, A.C., Knight, L., Taylor, I, Is-
trate, C., Suciu, G., Ulisses, A., Stankovski, V., Taherizadeh,
S., et al., 2019. Switch workbench: A novel approach for the
development and deployment of time-critical microservice-
based cloud-native applications. Future Generation Computer
Systems 99, 197-212.

Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella,
D., 2017. On multi-access edge computing: A survey of the
emerging 5g network edge cloud architecture and orchestra-
tion. IEEE Communications Surveys & Tutorials 19, 1657-
1681.

Tang, J., Jalalzai, M.M., Feng, C., Xiong, Z., Zhang, Y., 2022.
Latency-aware task scheduling in software-defined edge and
cloud computing with erasure-coded storage systems. IEEE
Transactions on Cloud Computing .

Tang, L., D’Ariano, A., Xu, X., Li, Y., Ding, X., Sama, M.,
2021. Scheduling local and express trains in suburban rail
transit lines: Mixed—integer nonlinear programming and adap-
tive genetic algorithm. Computers & Operations Research 135,
105436.

Villari, M., Celesti, A., Tricomi, G., Galletta, A., Fazio, M.,
2017. Deployment orchestration of microservices with geo-
graphical constraints for edge computing, in: 2017 IEEE Sym-
posium on Computers and Communications (ISCC), IEEE. pp.
633-638.

Wang, F.Y., Qin, R., Wang, X., Hu, B., 2022. Metasocieties in
metaverse: Metaeconomics and metamanagement for metaen-
terprises and metacities. IEEE Transactions on Computational
Social Systems 9, 2-7.

Wang, H., Xu, H., Huang, H., Chen, M., Chen, S., 2021. Robust
task offloading in dynamic edge computing. IEEE Transactions
on Mobile Computing .

Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., Shen, X.S.,
2019. Delay-aware microservice coordination in mobile edge
computing: A reinforcement learning approach. IEEE Trans-
actions on Mobile Computing .

Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.,
2020. Edge Al: Convergence of edge computing and artificial
intelligence. Springer.

Waseem, M., Liang, P., Shahin, M., 2020. A systematic map-
ping study on microservices architecture in devops. Journal
of Systems and Software 170, 110798.

Xing, T., Barbalace, A., Olivier, P., Karaoui, M.L., Wang, W.,
Ravindran, B., 2022. H-container: Enabling heterogeneous-isa
container migration in edge computing. ACM Transactions on
Computer Systems (TOCS) .

Xu, J., Palanisamy, B., Ludwig, H., Wang, Q., 2017. Zenith:
Utility-aware resource allocation for edge computing, in: 2017
IEEE international conference on edge computing (EDGE),
IEEE. pp. 47-54.

Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S., Qi, L.,
2019. A computation offloading method over big data for iot-

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 16 of 17

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing Environments

enabled cloud-edge computing. Future Generation Computer
Systems 95, 522-533.

Zhang, X., Zhang, J., Peng, C., Wang, X., 2022. Multimodal
optimization of edge server placement considering system re-
sponse time. ACM Transactions on Sensor Networks (TOSN)

Zhao, H., Deng, S., Liu, Z., Yin, J., Dustdar, S., 2019. Dis-
tributed redundant placement for microservice-based applica-
tions at the edge. arXiv preprint arXiv:1911.03600 .

Zhao, L., Li, B., Tan, W., Cui, G., He, Q., Xu, X., Xu, L., Yang,
Y., 2022. Joint coverage-reliability for budgeted edge applica-
tion deployment in mobile edge computing environment. IEEE
Transactions on Parallel and Distributed Systems 33, 3760-
3771.

Zhao, L., Li, Z., Al-Dubai, A.Y., Min, G., Li, J., Hawbani,
A., Zomaya, A.Y., 2021a. A novel prediction-based temporal
graph routing algorithm for software-defined vehicular net-
works. IEEE Transactions on Intelligent Transportation Sys-
tems .

Zhao, L., Zheng, T., Lin, M., Hawbani, A., Shang, J., Fan, C.,
2021b. Spider: a social computing inspired predictive routing
scheme for softwarized vehicular networks. IEEE Transactions
on Intelligent Transportation Systems .

Zhao, S., Talasila, M., Jacobson, G., Borcea, C., Aftab, S.A.,
Murray, J.F., 2018. Packaging and sharing machine learning
models via the acumos ai open platform, in: 2018 17th IEEE In-
ternational Conference on Machine Learning and Applications
(ICMLA), pp. 841-846. d0i:10.1109/ICMLA.2018.00135.
Zhou, Y., Zhang, D., Xiong, N., 2017. Post-cloud computing
paradigms: a survey and comparison. Tsinghua Science and
Technology 22, 714-732.

Chunrong Wu et al.: Preprint submitted to Elsevier

Page 17 of 17

Highlights

Edge computing is a promising paradigm to accelerate novel mobile
applications

Edge computing paradigm is still restricted by limited resources and error-
prone network

Edge resources are usually provisioned in a Container-as-a-Service way

Multiple DNN models with mixed deployment help to reduce the operating
costs of edge application providers

Considering multilevel load balance guarantees the robust of deployed edge

Al microservices

Author contributions

Use this form to specify the contribution of each author of your manuscript. A distinction is made between
five types of contributions: Conceived and designed the analysis; Collected the data; Contributed data or
analysis tools; Performed the analysis; Wrote the paper.

For each author of your manuscript, please indicate the types of contributions the author has made. An
author may have made more than one type of contribution. Optionally, for each contribution type, you may
specify the contribution of an author in more detail by providing a one-sentence statement in which the
contribution is summarized. In the case of an author who contributed to performing the analysis, the author’s
contribution for instance could be specified in more detail as ‘Performed the computer simulations’,
‘Performed the statistical analysis’, or ‘Performed the text mining analysis’.

If an author has made a contribution that is not covered by the five pre-defined contribution types, then
please choose ‘Other contribution’ and provide a one-sentence statement summarizing the author’s
contribution.

Manuscript title: Towards Cost-Effective and Robust Al Microservice Deployment in Edge Computing
Environments

Author 1: Chunrong Wu

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Wrote the paper
Specify contribution in more detail (optional; no more than one sentence)

[0 Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 2: Qinglan Peng

O

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Worote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 3: Yunni Xia

Conceived and designed the analysis
Specify contribution in more detail (optional; no morethan one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Worote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 4: Yong Jin

O

Conceived and designed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Worote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Author 5: Zhentao Hu

O

Conceived and designed the analysis
Specify contribution in more detail (optional; no morethan one sentence)

Collected the data
Specify contribution in more detail (optional; no more than one sentence)

Contributed data or analysis tools
Specify contribution in more detail (optional; no more than one sentence)

Performed the analysis
Specify contribution in more detail (optional; no more than one sentence)

Worote the paper
Specify contribution in more detail (optional; no more than one sentence)

Other contribution
Specify contribution in more detail (required; no more than one sentence)

Chunrong Wu, received the B.S. degree in software engineering from Xinjiang
University, Xinjiang, China, in 2016, the M.Eng. degree in software engineering from
Zhejiang Univesity, Zhejiang, China, in 2018, and the Ph.D. degree in software
engineering from Chongqing University, Chongqing, China, in 2022. She is currently a
Lecturer with the School of Artificial Intelligence, Henan University. She has authored

or coauthored more than 10 research publications. Her research interests are in edge

computing, service computing, and data mining.

Qinglan Peng, received the B.S. degree in software engineering from Xinjiang
University, Xinjiang, China, in 2016, the M.Eng. degree in software engineering
from Zhejiang Univesity, Zhejiang, China, in 2018, and the Ph.D. degree in software
engineering from Chongqing University, Chongqing, China, in 2022. He is currently

= a Lecturer with the School of Artificial Intelligence, Henan University. He has
< authored or coauthored more than 20 research publications. His research interests are

in edge computing, service computing, and cloud computing.

Yunni Xia, received the B.S. degree in computer science from Chongqing
University, Chongqing, China, in 2003, and the Ph.D. degree in computer science
from Peking University, Beijing, China, in 2008. He is currently a Professor with the
College of Computer Science, Chongging University. He has authored or coauthored
more than 100 research publications. His research interests are in service computing,

cloud computing, edge computing, intelligent data processing, and software

dependability.

Yong Jin, received the Ph.D. degree in computer science from Northwestern
Polytechnical University, Xian, China. He is currently a Professor the School of
- Artificial Intelligence, Henan University. His research interests are in distributed

computation and wireless sensor network.

Zhentao Hu, received the Ph.D. degree in computer science from Northwestern
Polytechnical University, Xian, China. He is currently a Professor the School of Artificial
Intelligence, Henan University. His research interests are in Intelligent Information

Processing, Modeling and estimation of complex systems, and moving targets tracking.

Author Credit Statement

Chunrong Wu: Conceived and designed the analysis; Collected the
data; Contributed data or analysis tools; Performed the analysis;
Wrote the paper.

Qinglan Peng: Collected the data; Contributed data or analysis
tools; Performed the analysis; Visualization; Methodology.

Yunni Xia: Conceived and designed the analysis; Performed the
analysis.

Yong Jin: Contributed data or analysis tools; Performed the
analysis.

Zhentao Hu: Collected the data; Supervision.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

1 The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

